真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

ElasticSearch中怎么提高查詢效率

ElasticSearch中怎么提高查詢效率,很多新手對此不是很清楚,為了幫助大家解決這個(gè)難題,下面小編將為大家詳細(xì)講解,有這方面需求的人可以來學(xué)習(xí)下,希望你能有所收獲。

成都創(chuàng)新互聯(lián)長期為上千多家客戶提供的網(wǎng)站建設(shè)服務(wù),團(tuán)隊(duì)從業(yè)經(jīng)驗(yàn)10年,關(guān)注不同地域、不同群體,并針對不同對象提供差異化的產(chǎn)品和服務(wù);打造開放共贏平臺,與合作伙伴共同營造健康的互聯(lián)網(wǎng)生態(tài)環(huán)境。為延吉企業(yè)提供專業(yè)的網(wǎng)站設(shè)計(jì)、成都網(wǎng)站建設(shè),延吉網(wǎng)站改版等技術(shù)服務(wù)。擁有十年豐富建站經(jīng)驗(yàn)和眾多成功案例,為您定制開發(fā)。

性能優(yōu)化的殺手锏——filesystem cache

你往 es 里寫的數(shù)據(jù),實(shí)際上都寫到磁盤文件里去了,查詢的時(shí)候,操作系統(tǒng)會將磁盤文件里的數(shù)據(jù)自動緩存到 filesystem cache 里面去。

ElasticSearch中怎么提高查詢效率

es 的搜索引擎嚴(yán)重依賴于底層的 filesystem cache,你如果給 filesystem cache 更多的內(nèi)存,盡量讓內(nèi)存可以容納所有的 idx segment file 索引數(shù)據(jù)文件,那么你搜索的時(shí)候就基本都是走內(nèi)存的,性能會非常高。

性能差距究竟可以有多大?我們之前很多的測試和壓測,如果走磁盤一般肯定上秒,搜索性能絕對是秒級別的,1秒、5秒、10秒。但如果是走 filesystem cache,是走純內(nèi)存的,那么一般來說性能比走磁盤要高一個(gè)數(shù)量級,基本上就是毫秒級的,從幾毫秒到幾百毫秒不等。

這里有個(gè)真實(shí)的案例。某個(gè)公司 es 節(jié)點(diǎn)有 3 臺機(jī)器,每臺機(jī)器看起來內(nèi)存很多,64G,總內(nèi)存就是 64 * 3 = 192G。每臺機(jī)器給 es jvm heap 是 32G,那么剩下來留給 filesystem cache 的就是每臺機(jī)器才 32G,總共集群里給 filesystem cache 的就是 32 * 3 = 96G 內(nèi)存。而此時(shí),整個(gè)磁盤上索引數(shù)據(jù)文件,在 3 臺機(jī)器上一共占用了 1T 的磁盤容量,es 數(shù)據(jù)量是 1T,那么每臺機(jī)器的數(shù)據(jù)量是 300G。這樣性能好嗎? filesystem cache 的內(nèi)存才 100G,十分之一的數(shù)據(jù)可以放內(nèi)存,其他的都在磁盤,然后你執(zhí)行搜索操作,大部分操作都是走磁盤,性能肯定差。

歸根結(jié)底,你要讓 es 性能要好,最佳的情況下,就是你的機(jī)器的內(nèi)存,至少可以容納你的總數(shù)據(jù)量的一半。

根據(jù)我們自己的生產(chǎn)環(huán)境實(shí)踐經(jīng)驗(yàn),最佳的情況下,是僅僅在 es 中就存少量的數(shù)據(jù),就是你要用來搜索的那些索引,如果內(nèi)存留給 filesystem cache 的是 100G,那么你就將索引數(shù)據(jù)控制在 100G 以內(nèi),這樣的話,你的數(shù)據(jù)幾乎全部走內(nèi)存來搜索,性能非常之高,一般可以在 1 秒以內(nèi)。

比如說你現(xiàn)在有一行數(shù)據(jù)。id,name,age .... 30 個(gè)字段。但是你現(xiàn)在搜索,只需要根據(jù) id,name,age 三個(gè)字段來搜索。如果你傻乎乎往 es 里寫入一行數(shù)據(jù)所有的字段,就會導(dǎo)致說 90% 的數(shù)據(jù)是不用來搜索的,結(jié)果硬是占據(jù)了 es 機(jī)器上的 filesystem cache 的空間,單條數(shù)據(jù)的數(shù)據(jù)量越大,就會導(dǎo)致 filesystem cahce 能緩存的數(shù)據(jù)就越少。其實(shí),僅僅寫入 es 中要用來檢索的少數(shù)幾個(gè)字段就可以了,比如說就寫入 es id,name,age 三個(gè)字段,然后你可以把其他的字段數(shù)據(jù)存在 MySQL/hbase 里,我們一般是建議用 es + hbase 這么一個(gè)架構(gòu)。

hbase 的特點(diǎn)是適用于海量數(shù)據(jù)的在線存儲,就是對 hbase 可以寫入海量數(shù)據(jù),但是不要做復(fù)雜的搜索,做很簡單的一些根據(jù) id 或者范圍進(jìn)行查詢的這么一個(gè)操作就可以了。從 es 中根據(jù) name 和 age 去搜索,拿到的結(jié)果可能就 20 個(gè) doc id,然后根據(jù) doc id 到 hbase 里去查詢每個(gè) doc id 對應(yīng)的完整的數(shù)據(jù),給查出來,再返回給前端。

寫入 es 的數(shù)據(jù)最好小于等于,或者是略微大于 es 的 filesystem cache 的內(nèi)存容量。然后你從 es 檢索可能就花費(fèi) 20ms,然后再根據(jù) es 返回的 id 去 hbase 里查詢,查 20 條數(shù)據(jù),可能也就耗費(fèi)個(gè) 30ms,可能你原來那么玩兒,1T 數(shù)據(jù)都放 es,會每次查詢都是 5~10s,現(xiàn)在可能性能就會很高,每次查詢就是 50ms。

數(shù)據(jù)預(yù)熱

假如說,哪怕是你就按照上述的方案去做了,es 集群中每個(gè)機(jī)器寫入的數(shù)據(jù)量還是超過了 filesystem cache 一倍,比如說你寫入一臺機(jī)器 60G 數(shù)據(jù),結(jié)果 filesystem cache 就 30G,還是有 30G 數(shù)據(jù)留在了磁盤上。

其實(shí)可以做數(shù)據(jù)預(yù)熱。

舉個(gè)例子,拿微博來說,你可以把一些大V,平時(shí)看的人很多的數(shù)據(jù),你自己提前后臺搞個(gè)系統(tǒng),每隔一會兒,自己的后臺系統(tǒng)去搜索一下熱數(shù)據(jù),刷到 filesystem cache 里去,后面用戶實(shí)際上來看這個(gè)熱數(shù)據(jù)的時(shí)候,他們就是直接從內(nèi)存里搜索了,很快。

或者是電商,你可以將平時(shí)查看最多的一些商品,比如說 iphone 8,熱數(shù)據(jù)提前后臺搞個(gè)程序,每隔 1 分鐘自己主動訪問一次,刷到 filesystem cache 里去。

對于那些你覺得比較熱的、經(jīng)常會有人訪問的數(shù)據(jù),最好做一個(gè)專門的緩存預(yù)熱子系統(tǒng),就是對熱數(shù)據(jù)每隔一段時(shí)間,就提前訪問一下,讓數(shù)據(jù)進(jìn)入 filesystem cache 里面去。這樣下次別人訪問的時(shí)候,性能一定會好很多。

冷熱分離

es 可以做類似于 mysql 的水平拆分,就是說將大量的訪問很少、頻率很低的數(shù)據(jù),單獨(dú)寫一個(gè)索引,然后將訪問很頻繁的熱數(shù)據(jù)單獨(dú)寫一個(gè)索引。最好是將冷數(shù)據(jù)寫入一個(gè)索引中,然后熱數(shù)據(jù)寫入另外一個(gè)索引中,這樣可以確保熱數(shù)據(jù)在被預(yù)熱之后,盡量都讓他們留在 filesystem os cache 里,別讓冷數(shù)據(jù)給沖刷掉。

你看,假設(shè)你有 6 臺機(jī)器,2 個(gè)索引,一個(gè)放冷數(shù)據(jù),一個(gè)放熱數(shù)據(jù),每個(gè)索引 3 個(gè) shard。3 臺機(jī)器放熱數(shù)據(jù) index,另外 3 臺機(jī)器放冷數(shù)據(jù) index。然后這樣的話,你大量的時(shí)間是在訪問熱數(shù)據(jù) index,熱數(shù)據(jù)可能就占總數(shù)據(jù)量的 10%,此時(shí)數(shù)據(jù)量很少,幾乎全都保留在 filesystem cache 里面了,就可以確保熱數(shù)據(jù)的訪問性能是很高的。但是對于冷數(shù)據(jù)而言,是在別的 index 里的,跟熱數(shù)據(jù) index 不在相同的機(jī)器上,大家互相之間都沒什么聯(lián)系了。如果有人訪問冷數(shù)據(jù),可能大量數(shù)據(jù)是在磁盤上的,此時(shí)性能差點(diǎn),就 10% 的人去訪問冷數(shù)據(jù),90% 的人在訪問熱數(shù)據(jù),也無所謂了。

document 模型設(shè)計(jì)

對于 MySQL,我們經(jīng)常有一些復(fù)雜的關(guān)聯(lián)查詢。在 es 里該怎么玩兒,es 里面的復(fù)雜的關(guān)聯(lián)查詢盡量別用,一旦用了性能一般都不太好。

最好是先在 Java 系統(tǒng)里就完成關(guān)聯(lián),將關(guān)聯(lián)好的數(shù)據(jù)直接寫入 es 中。搜索的時(shí)候,就不需要利用 es 的搜索語法來完成 join 之類的關(guān)聯(lián)搜索了。

document 模型設(shè)計(jì)是非常重要的,很多操作,不要在搜索的時(shí)候才想去執(zhí)行各種復(fù)雜的亂七八糟的操作。es 能支持的操作就那么多,不要考慮用 es 做一些它不好操作的事情。如果真的有那種操作,盡量在 document 模型設(shè)計(jì)的時(shí)候,寫入的時(shí)候就完成。另外對于一些太復(fù)雜的操作,比如 join/nested/parent-child 搜索都要盡量避免,性能都很差的。

分頁性能優(yōu)化

es 的分頁是較坑的,為啥呢?舉個(gè)例子吧,假如你每頁是 10 條數(shù)據(jù),你現(xiàn)在要查詢第 100 頁,實(shí)際上是會把每個(gè) shard 上存儲的前 1000 條數(shù)據(jù)都查到一個(gè)協(xié)調(diào)節(jié)點(diǎn)上,如果你有個(gè) 5 個(gè) shard,那么就有 5000 條數(shù)據(jù),接著協(xié)調(diào)節(jié)點(diǎn)對這 5000 條數(shù)據(jù)進(jìn)行一些合并、處理,再獲取到最終第 100 頁的 10 條數(shù)據(jù)。

分布式的,你要查第 100 頁的 10 條數(shù)據(jù),不可能說從 5 個(gè) shard,每個(gè) shard 就查 2 條數(shù)據(jù),最后到協(xié)調(diào)節(jié)點(diǎn)合并成 10 條數(shù)據(jù)吧?你必須得從每個(gè) shard 都查 1000 條數(shù)據(jù)過來,然后根據(jù)你的需求進(jìn)行排序、篩選等等操作,最后再次分頁,拿到里面第 100 頁的數(shù)據(jù)。你翻頁的時(shí)候,翻的越深,每個(gè) shard 返回的數(shù)據(jù)就越多,而且協(xié)調(diào)節(jié)點(diǎn)處理的時(shí)間越長,非常坑爹。所以用 es 做分頁的時(shí)候,你會發(fā)現(xiàn)越翻到后面,就越是慢。

類似于 app 里的推薦商品不斷下拉出來一頁一頁的

類似于微博中,下拉刷微博,刷出來一頁一頁的,你可以用 scroll api,關(guān)于如何使用,自行上網(wǎng)搜索。

scroll 會一次性給你生成所有數(shù)據(jù)的一個(gè)快照,然后每次滑動向后翻頁就是通過游標(biāo) scroll_id移動,獲取下一頁下一頁這樣子,性能會比上面說的那種分頁性能要高很多很多,基本上都是毫秒級的。

但是,唯一的一點(diǎn)就是,這個(gè)適合于那種類似微博下拉翻頁的,不能隨意跳到任何一頁的場景。也就是說,你不能先進(jìn)入第 10 頁,然后去第 120 頁,然后又回到第 58 頁,不能隨意亂跳頁。所以現(xiàn)在很多產(chǎn)品,都是不允許你隨意翻頁的,app,也有一些網(wǎng)站,做的就是你只能往下拉,一頁一頁的翻。

初始化時(shí)必須指定 scroll 參數(shù),告訴 es 要保存此次搜索的上下文多長時(shí)間。你需要確保用戶不會持續(xù)不斷翻頁翻幾個(gè)小時(shí),否則可能因?yàn)槌瑫r(shí)而失敗。

除了用 scroll api,你也可以用 search_after 來做,search_after 的思想是使用前一頁的結(jié)果來幫助檢索下一頁的數(shù)據(jù),顯然,這種方式也不允許你隨意翻頁,你只能一頁頁往后翻。初始化時(shí),需要使用一個(gè)唯一值的字段作為 sort 字段。

看完上述內(nèi)容是否對您有幫助呢?如果還想對相關(guān)知識有進(jìn)一步的了解或閱讀更多相關(guān)文章,請關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,感謝您對創(chuàng)新互聯(lián)的支持。


網(wǎng)站名稱:ElasticSearch中怎么提高查詢效率
分享URL:http://weahome.cn/article/iecigd.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部