這篇文章主要為大家展示了“如何利用eclipse編寫自定義hive udf函數(shù)”,內(nèi)容簡而易懂,條理清晰,希望能夠幫助大家解決疑惑,下面讓小編帶領(lǐng)大家一起研究并學(xué)習(xí)一下“如何利用eclipse編寫自定義hive udf函數(shù)”這篇文章吧。
成都創(chuàng)新互聯(lián)專注于網(wǎng)站建設(shè),為客戶提供成都做網(wǎng)站、網(wǎng)站制作、成都外貿(mào)網(wǎng)站建設(shè)、網(wǎng)頁設(shè)計開發(fā)服務(wù),多年建網(wǎng)站服務(wù)經(jīng)驗,各類網(wǎng)站都可以開發(fā),高端網(wǎng)站設(shè)計,公司官網(wǎng),公司展示網(wǎng)站,網(wǎng)站設(shè)計,建網(wǎng)站費用,建網(wǎng)站多少錢,價格優(yōu)惠,收費合理。
在做日志分析的過程中,用到了hadoop框架中的hive,不過有些日志處理用hive中的函數(shù)處理顯得力不從心,就需要用udf來進(jìn)行擴展處理了
1 在eclipse中新建java project hiveudf 然后新建class package(com.afan) name(UDFLower)
2 添加jar library hadoop-core-1.1.2.jar(來源hadoop1.1.2) hive-exec-0.9.0.jar(來源hive-0.9.0)兩個文件到project
import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;
public class UDFLower extends UDF{
public Text evaluate(final Text s){
if (null == s){
return null;
}
return new Text(s.toString().toLowerCase());
}
}
4 編譯輸出打包文件為 udf_hive.jar
第一步:
第二步:
第三步:
第四步:
第五步:
第六步:
5 將udf_hive.jar放入配置好的linux系統(tǒng)的文件夾中路徑為/root/data/udf_hive.jar
6 打開hive命令行測試
hive> add jar /root/data/udf_hive.jar;
Added udf_hive.jar to class path
Added resource: udf_hive.jar
創(chuàng)建udf函數(shù)
hive> create temporary function my_lower as 'UDFLower'; // UDFLower'表示你的類的地址,例如你有包名:cn.jiang.UDFLower.java,那么就as后面接‘cn.jiang.UDFLower’,如果沒有包名就直接寫類名'UDFLower'就行
創(chuàng)建測試數(shù)據(jù)
hive> create table dual (name string);
導(dǎo)入數(shù)據(jù)文件test.txt
test.txt文件內(nèi)容為
WHO
AM
I
HELLO
hive> load data local inpath '/root/data/test.txt' into table dual;
hive> select name from dual;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201105150525_0003, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201105150525_0003
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201105150525_0003
2011-05-15 06:46:05,459 Stage-1 map = 0%, reduce = 0%
2011-05-15 06:46:10,905 Stage-1 map = 100%, reduce = 0%
2011-05-15 06:46:13,963 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201105150525_0003
OK
WHO
AM
I
HELLO
使用udf函數(shù)
hive> select my_lower(name) from dual;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201105150525_0002, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201105150525_0002
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201105150525_0002
2011-05-15 06:43:26,100 Stage-1 map = 0%, reduce = 0%
2011-05-15 06:43:34,364 Stage-1 map = 100%, reduce = 0%
2011-05-15 06:43:37,484 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201105150525_0002
OK
who
am
i
hello
經(jīng)測試成功通過
以上是“如何利用eclipse編寫自定義hive udf函數(shù)”這篇文章的所有內(nèi)容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內(nèi)容對大家有所幫助,如果還想學(xué)習(xí)更多知識,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道!