深入淺析java 中volatile與lock的原理?針對(duì)這個(gè)問(wèn)題,這篇文章詳細(xì)介紹了相對(duì)應(yīng)的分析和解答,希望可以幫助更多想解決這個(gè)問(wèn)題的小伙伴找到更簡(jiǎn)單易行的方法。
成都創(chuàng)新互聯(lián)公司是一家專業(yè)提供全州企業(yè)網(wǎng)站建設(shè),專注與成都網(wǎng)站建設(shè)、網(wǎng)站建設(shè)、H5高端網(wǎng)站建設(shè)、小程序制作等業(yè)務(wù)。10年已為全州眾多企業(yè)、政府機(jī)構(gòu)等服務(wù)。創(chuàng)新互聯(lián)專業(yè)的建站公司優(yōu)惠進(jìn)行中。
java 中volatile和lock原理分析
volatile和lock是Java中用于線程協(xié)同同步的兩種機(jī)制。
Volatile
volatile是Java中的一個(gè)關(guān)鍵字,它的作用有
volatile在Java語(yǔ)言規(guī)范中規(guī)定的是
The Java programming language allows threads to access shared variables (§17.1). As a rule, to ensure that shared variables are consistently and reliably updated, a thread should ensure that it has exclusive use of such variables by obtaining a lock that, conventionally, enforces mutual exclusion for those shared variables. The Java programming language provides a second mechanism, volatile fields, that is more convenient than locking for some purposes. A field may be declared volatile, in which case the Java Memory Model ensures that all threads see a consistent value for the variable . It is a compile-time error if a final variable is also declared volatile.
Java內(nèi)存模型中規(guī)定了volatile的happen-before效果,對(duì)volatile變量的寫(xiě)操作happen-before于后續(xù)的讀。這樣volatile變量能夠確保一個(gè)線程的修改對(duì)其他線程可見(jiàn)。volatile因?yàn)椴荒鼙WC原子性,所以不能在有約束或后驗(yàn)條件的場(chǎng)景下使用,如i++,常用的場(chǎng)景是stop變量保證系統(tǒng)停止對(duì)其他線程可見(jiàn),double-check lock單例中防止重排序來(lái)保證安全發(fā)布等。
以下面這段代碼為例
public class TestVolatile { private static volatile boolean stop = false; public static void main(String[] args) { stop = true; boolean b = stop; } }
stop字段聲明為volatile類型后,編譯后的字節(jié)碼中其變量的access_flag中ACC_VOLATILE位置為1。
關(guān)鍵的字節(jié)碼內(nèi)容如下
public static void main(java.lang.String[]); descriptor: ([Ljava/lang/String;)V flags: ACC_PUBLIC, ACC_STATIC Code: stack=1, locals=2, args_size=1 0: iconst_1 1: putstatic #2 // Field stop:Z 4: getstatic #2 // Field stop:Z 7: istore_1 8: return LineNumberTable: line 14: 0 line 15: 4 line 16: 8 LocalVariableTable: Start Length Slot Name Signature 0 9 0 args [Ljava/lang/String; 8 1 1 b Z static {}; descriptor: ()V flags: ACC_STATIC Code: stack=1, locals=0, args_size=0 0: iconst_0 1: putstatic #2 // Field stop:Z 4: return LineNumberTable: line 11: 0 }
通過(guò)hsdis查看虛擬機(jī)產(chǎn)生的匯編代碼。
測(cè)試環(huán)境為java version “1.8.0_45”,MACOS10.12.1 i386:x86-64
在執(zhí)行參數(shù)上添加
-XX:+UnlockDiagnosticVMOptions -XX:+LogCompilation -XX:+PrintAssembly -Xcomp -XX:CompileCommand=dontinline,*TestVolatile.main -XX:CompileCommand=compileonly,*TestVolatile.main
查看main方法的匯編指令結(jié)果
Decoding compiled method 0x000000010c732c50: Code: [Disassembling for mach='i386:x86-64'] [Entry Point] [Verified Entry Point] [Constants] # {method} {0x000000012422a2c8} 'main' '([Ljava/lang/String;)V' in 'com/concurrent/volatiles/TestVolatile' # parm0: rsi:rsi = '[Ljava/lang/String;' # [sp+0x40] (sp of caller) 0x000000010c732da0: mov %eax,-0x14000(%rsp) 0x000000010c732da7: push %rbp 0x000000010c732da8: sub $0x30,%rsp 0x000000010c732dac: movabs $0x12422a448,%rdi ; {metadata(method data for {method} {0x000000012422a2c8} 'main' '([Ljava/lang/String;)V' in 'com/concurrent/volatiles/TestVolatile')} 0x000000010c732db6: mov 0xdc(%rdi),%ebx 0x000000010c732dbc: add $0x8,%ebx 0x000000010c732dbf: mov %ebx,0xdc(%rdi) 0x000000010c732dc5: movabs $0x12422a2c8,%rdi ; {metadata({method} {0x000000012422a2c8} 'main' '([Ljava/lang/String;)V' in 'com/concurrent/volatiles/TestVolatile')} 0x000000010c732dcf: and $0x0,%ebx 0x000000010c732dd2: cmp $0x0,%ebx 0x000000010c732dd5: je 0x000000010c732e03 ;*iconst_1 ; - com.concurrent.volatiles.TestVolatile::main@0 (line 14) 0x000000010c732ddb: movabs $0x76adce798,%rsi ; {oop(a 'java/lang/Class' = 'com/concurrent/volatiles/TestVolatile')} 0x000000010c732de5: mov $0x1,%edi 0x000000010c732dea: mov %dil,0x68(%rsi) 0x000000010c732dee: lock addl $0x0,(%rsp) ;*putstatic stop ; - com.concurrent.volatiles.TestVolatile::main@1 (line 14) 0x000000010c732df3: movsbl 0x68(%rsi),%esi ;*getstatic stop ; - com.concurrent.volatiles.TestVolatile::main@4 (line 15) 0x000000010c732df7: add $0x30,%rsp 0x000000010c732dfb: pop %rbp 0x000000010c732dfc: test %eax,-0x3adbd02(%rip) # 0x0000000108c57100 ; {poll_return} 0x000000010c732e02: retq 0x000000010c732e03: mov %rdi,0x8(%rsp) 0x000000010c732e08: movq $0xffffffffffffffff,(%rsp) 0x000000010c732e10: callq 0x000000010c7267e0 ; OopMap{rsi=Oop off=117} ;*synchronization entry ; - com.concurrent.volatiles.TestVolatile::main@-1 (line 14) ; {runtime_call} 0x000000010c732e15: jmp 0x000000010c732ddb 0x000000010c732e17: nop 0x000000010c732e18: nop 0x000000010c732e19: mov 0x2a8(%r15),%rax 0x000000010c732e20: movabs $0x0,%r10 0x000000010c732e2a: mov %r10,0x2a8(%r15) 0x000000010c732e31: movabs $0x0,%r10 0x000000010c732e3b: mov %r10,0x2b0(%r15) 0x000000010c732e42: add $0x30,%rsp 0x000000010c732e46: pop %rbp 0x000000010c732e47: jmpq 0x000000010c6940e0 ; {runtime_call} [Exception Handler]
可以看到在mov %dil,0x68(%rsi)給stop賦值后增加了lock addl $0x0,(%rsp)
IA32中對(duì)lock的說(shuō)明是
The LOCK # signal is asserted during execution of the instruction following the lock prefix. This signal can be used in a multiprocessor system to ensure exclusive use of shared memory while LOCK # is asserted
lock用于在多處理器中執(zhí)行指令時(shí)對(duì)共享內(nèi)存的獨(dú)占使用。它的副作用是能夠?qū)?dāng)前處理器對(duì)應(yīng)緩存的內(nèi)容刷新到內(nèi)存,并使其他處理器對(duì)應(yīng)的緩存失效。另外還提供了有序的指令無(wú)法越過(guò)這個(gè)內(nèi)存屏障的作用。
Lock
Java中提供的鎖的關(guān)鍵字是synchronized, 可以加在方法塊上,也可以加在方法聲明中。
synchronized關(guān)鍵字起到的作用是設(shè)置一個(gè)獨(dú)占訪問(wèn)臨界區(qū),在進(jìn)入這個(gè)臨界區(qū)前要先獲取對(duì)應(yīng)的監(jiān)視器鎖,任何Java對(duì)象都可以成為監(jiān)視器鎖,聲明在靜態(tài)方法上時(shí)監(jiān)視器鎖是當(dāng)前類的Class對(duì)象,實(shí)例方法上是當(dāng)前實(shí)例。
synchronized提供了原子性、可見(jiàn)性和防止重排序的保證。
JMM中定義監(jiān)視器鎖的釋放操作happen-before與后續(xù)的同一個(gè)監(jiān)視器鎖獲取操作。再結(jié)合程序順序規(guī)則就可以形成內(nèi)存?zhèn)鬟f可見(jiàn)性保證。
下面以一段代碼查看各個(gè)層次的實(shí)現(xiàn)
public class TestSynchronize { private int count; private void inc() { synchronized (this) { count++; } } public static void main(String[] args) { new TestSynchronize().inc(); } }
編譯后inc方法的字節(jié)碼為
private void inc(); descriptor: ()V flags: ACC_PRIVATE Code: stack=3, locals=3, args_size=1 0: aload_0 1: dup 2: astore_1 3: monitorenter 4: aload_0 5: dup 6: getfield #2 // Field count:I 9: iconst_1 10: iadd 11: putfield #2 // Field count:I 14: aload_1 15: monitorexit 16: goto 24 19: astore_2 20: aload_1 21: monitorexit 22: aload_2 23: athrow 24: return Exception table: from to target type 4 16 19 any 19 22 19 any LineNumberTable: line 14: 0 line 15: 4
在synchronized代碼塊前后增加的monitorenter和monitorexist兩個(gè)JVM字節(jié)碼指令,指令的參數(shù)是this引用。
hotspot中對(duì)于monitor_enter和monitor_exit的處理是
void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { if (!GenerateSynchronizationCode) return; // for slow path, use debug info for state after successful locking CodeStub* slow_path = new MonitorEnterStub(object, lock, info); __ load_stack_address_monitor(monitor_no, lock); // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); } void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { if (!GenerateSynchronizationCode) return; // setup registers LIR_Opr hdr = lock; lock = new_hdr; CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no); __ load_stack_address_monitor(monitor_no, lock); __ unlock_object(hdr, object, lock, scratch, slow_path); }
inc方法在本機(jī)上輸出的匯編代碼為
Decoding compiled method 0x0000000115be3e50: Code: [Entry Point] [Constants] # {method} {0x0000000113082328} 'inc' '()V' in 'com/concurrent/lock/TestSynchronize' # [sp+0x50] (sp of caller) 0x0000000115be3fc0: mov 0x8(%rsi),%r10d 0x0000000115be3fc4: shl $0x3,%r10 0x0000000115be3fc8: cmp %rax,%r10 0x0000000115be3fcb: jne 0x0000000115b1de20 ; {runtime_call} 0x0000000115be3fd1: data32 data32 nopw 0x0(%rax,%rax,1) 0x0000000115be3fdc: data32 data32 xchg %ax,%ax [Verified Entry Point] 0x0000000115be3fe0: mov %eax,-0x14000(%rsp) 0x0000000115be3fe7: push %rbp 0x0000000115be3fe8: sub $0x40,%rsp 0x0000000115be3fec: movabs $0x113082848,%rax ; {metadata(method data for {method} {0x0000000113082328} 'inc' '()V' in 'com/concurrent/lock/TestSynchronize')} 0x0000000115be3ff6: mov 0xdc(%rax),%edi 0x0000000115be3ffc: add $0x8,%edi 0x0000000115be3fff: mov %edi,0xdc(%rax) 0x0000000115be4005: movabs $0x113082328,%rax ; {metadata({method} {0x0000000113082328} 'inc' '()V' in 'com/concurrent/lock/TestSynchronize')} 0x0000000115be400f: and $0x0,%edi 0x0000000115be4012: cmp $0x0,%edi 0x0000000115be4015: je 0x0000000115be418d ;*aload_0 ; - com.concurrent.lock.TestSynchronize::inc@0 (line 14) 0x0000000115be401b: lea 0x20(%rsp),%rdi 0x0000000115be4020: mov %rsi,0x8(%rdi) 0x0000000115be4024: mov (%rsi),%rax 0x0000000115be4027: mov %rax,%rbx 0x0000000115be402a: and $0x7,%rbx 0x0000000115be402e: cmp $0x5,%rbx 0x0000000115be4032: jne 0x0000000115be40b9 0x0000000115be4038: mov 0x8(%rsi),%ebx 0x0000000115be403b: shl $0x3,%rbx 0x0000000115be403f: mov 0xa8(%rbx),%rbx 0x0000000115be4046: or %r15,%rbx 0x0000000115be4049: xor %rax,%rbx 0x0000000115be404c: and $0xffffffffffffff87,%rbx 0x0000000115be4050: je 0x0000000115be40e1 0x0000000115be4056: test $0x7,%rbx 0x0000000115be405d: jne 0x0000000115be40a6 0x0000000115be405f: test $0x300,%rbx 0x0000000115be4066: jne 0x0000000115be4085 0x0000000115be4068: and $0x37f,%rax 0x0000000115be406f: mov %rax,%rbx 0x0000000115be4072: or %r15,%rbx 0x0000000115be4075: lock cmpxchg %rbx,(%rsi) 0x0000000115be407a: jne 0x0000000115be41a4 0x0000000115be4080: jmpq 0x0000000115be40e1 0x0000000115be4085: mov 0x8(%rsi),%ebx 0x0000000115be4088: shl $0x3,%rbx 0x0000000115be408c: mov 0xa8(%rbx),%rbx 0x0000000115be4093: or %r15,%rbx 0x0000000115be4096: lock cmpxchg %rbx,(%rsi) 0x0000000115be409b: jne 0x0000000115be41a4 0x0000000115be40a1: jmpq 0x0000000115be40e1 0x0000000115be40a6: mov 0x8(%rsi),%ebx 0x0000000115be40a9: shl $0x3,%rbx 0x0000000115be40ad: mov 0xa8(%rbx),%rbx 0x0000000115be40b4: lock cmpxchg %rbx,(%rsi) 0x0000000115be40b9: mov (%rsi),%rax 0x0000000115be40bc: or $0x1,%rax 0x0000000115be40c0: mov %rax,(%rdi) 0x0000000115be40c3: lock cmpxchg %rdi,(%rsi) 0x0000000115be40c8: je 0x0000000115be40e1 0x0000000115be40ce: sub %rsp,%rax 0x0000000115be40d1: and $0xfffffffffffff007,%rax 0x0000000115be40d8: mov %rax,(%rdi) 0x0000000115be40db: jne 0x0000000115be41a4 ;*monitorenter ; - com.concurrent.lock.TestSynchronize::inc@3 (line 14) 0x0000000115be40e1: mov 0xc(%rsi),%eax ;*getfield count ; - com.concurrent.lock.TestSynchronize::inc@6 (line 15) 0x0000000115be40e4: inc %eax 0x0000000115be40e6: mov %eax,0xc(%rsi) ;*putfield count ; - com.concurrent.lock.TestSynchronize::inc@11 (line 15) 0x0000000115be40e9: lea 0x20(%rsp),%rax 0x0000000115be40ee: mov 0x8(%rax),%rdi 0x0000000115be40f2: mov (%rdi),%rsi 0x0000000115be40f5: and $0x7,%rsi 0x0000000115be40f9: cmp $0x5,%rsi 0x0000000115be40fd: je 0x0000000115be411a 0x0000000115be4103: mov (%rax),%rsi 0x0000000115be4106: test %rsi,%rsi 0x0000000115be4109: je 0x0000000115be411a 0x0000000115be410f: lock cmpxchg %rsi,(%rdi) 0x0000000115be4114: jne 0x0000000115be41b7 ;*monitorexit ; - com.concurrent.lock.TestSynchronize::inc@15 (line 16) 0x0000000115be411a: movabs $0x113082848,%rax ; {metadata(method data for {method} {0x0000000113082328} 'inc' '()V' in 'com/concurrent/lock/TestSynchronize')} 0x0000000115be4124: incl 0x108(%rax) ;*goto ; - com.concurrent.lock.TestSynchronize::inc@16 (line 16) 0x0000000115be412a: add $0x40,%rsp 0x0000000115be412e: pop %rbp 0x0000000115be412f: test %eax,-0x684e035(%rip) # 0x000000010f396100 ; {poll_return} 0x0000000115be4135: retq ;*return ; - com.concurrent.lock.TestSynchronize::inc@24 (line 17) 0x0000000115be4136: mov 0x2a8(%r15),%rax 0x0000000115be413d: xor %r10,%r10 0x0000000115be4140: mov %r10,0x2a8(%r15) 0x0000000115be4147: xor %r10,%r10 0x0000000115be414a: mov %r10,0x2b0(%r15) 0x0000000115be4151: mov %rax,%rsi 0x0000000115be4154: lea 0x20(%rsp),%rax 0x0000000115be4159: mov 0x8(%rax),%rbx 0x0000000115be415d: mov (%rbx),%rdi 0x0000000115be4160: and $0x7,%rdi 0x0000000115be4164: cmp $0x5,%rdi 0x0000000115be4168: je 0x0000000115be4185 0x0000000115be416e: mov (%rax),%rdi 0x0000000115be4171: test %rdi,%rdi 0x0000000115be4174: je 0x0000000115be4185 0x0000000115be417a: lock cmpxchg %rdi,(%rbx) 0x0000000115be417f: jne 0x0000000115be41ca ;*monitorexit ; - com.concurrent.lock.TestSynchronize::inc@21 (line 16) 0x0000000115be4185: mov %rsi,%rax 0x0000000115be4188: jmpq 0x0000000115be4205 0x0000000115be418d: mov %rax,0x8(%rsp) 0x0000000115be4192: movq $0xffffffffffffffff,(%rsp) 0x0000000115be419a: callq 0x0000000115bd5be0 ; OopMap{rsi=Oop off=479} ;*synchronization entry ; - com.concurrent.lock.TestSynchronize::inc@-1 (line 14) ; {runtime_call} 0x0000000115be419f: jmpq 0x0000000115be401b 0x0000000115be41a4: mov %rsi,0x8(%rsp) 0x0000000115be41a9: mov %rdi,(%rsp) 0x0000000115be41ad: callq 0x0000000115bd4060 ; OopMap{rsi=Oop [40]=Oop off=498} ;*monitorenter ; - com.concurrent.lock.TestSynchronize::inc@3 (line 14) ; {runtime_call} 0x0000000115be41b2: jmpq 0x0000000115be40e1 0x0000000115be41b7: lea 0x20(%rsp),%rax 0x0000000115be41bc: mov %rax,(%rsp) 0x0000000115be41c0: callq 0x0000000115bd4420 ; {runtime_call} 0x0000000115be41c5: jmpq 0x0000000115be411a 0x0000000115be41ca: lea 0x20(%rsp),%rax 0x0000000115be41cf: mov %rax,(%rsp) 0x0000000115be41d3: callq 0x0000000115bd4420 ; {runtime_call} 0x0000000115be41d8: jmp 0x0000000115be4185 0x0000000115be41da: nop 0x0000000115be41db: nop 0x0000000115be41dc: mov 0x2a8(%r15),%rax 0x0000000115be41e3: movabs $0x0,%r10 0x0000000115be41ed: mov %r10,0x2a8(%r15) 0x0000000115be41f4: movabs $0x0,%r10 0x0000000115be41fe: mov %r10,0x2b0(%r15) 0x0000000115be4205: add $0x40,%rsp 0x0000000115be4209: pop %rbp 0x0000000115be420a: jmpq 0x0000000115b440e0 ; {runtime_call} [Exception Handler]
其中l(wèi)ock cmpxchg為Compare And Exchange
CMPXCHG compares its destination (first) operand to the value in AL, AX or EAX (depending on the size of the instruction). If they are equal, it copies its source (second) operand into the destination and sets the zero flag. Otherwise, it clears the zero flag and leaves the destination alone.
CMPXCHG is intended to be used for atomic operations in multitasking or multiprocessor environments. To safely update a value in shared memory, for example, you might load the value into EAX, load the updated value into EBX, and then execute the instruction lock cmpxchg [value],ebx. If value has not changed since being loaded, it is updated with your desired new value, and the zero flag is set to let you know it has worked. (The LOCK prefix prevents another processor doing anything in the middle of this operation: it guarantees atomicity.) However, if another processor has modified the value in between your load and your attempted store, the store does not happen, and you are notified of the failure by a cleared zero flag, so you can go round and try again.
關(guān)于深入淺析java 中volatile與lock的原理問(wèn)題的解答就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,如果你還有很多疑惑沒(méi)有解開(kāi),可以關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道了解更多相關(guān)知識(shí)。