真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

Pytorch如何實現(xiàn)數(shù)據(jù)加載與數(shù)據(jù)預(yù)處理-創(chuàng)新互聯(lián)

這篇文章給大家分享的是有關(guān)Pytorch如何實現(xiàn)數(shù)據(jù)加載與數(shù)據(jù)預(yù)處理的內(nèi)容。小編覺得挺實用的,因此分享給大家做個參考,一起跟隨小編過來看看吧。

成都創(chuàng)新互聯(lián)公司堅信:善待客戶,將會成為終身客戶。我們能堅持多年,是因為我們一直可值得信賴。我們從不忽悠初訪客戶,我們用心做好本職工作,不忘初心,方得始終。十多年網(wǎng)站建設(shè)經(jīng)驗成都創(chuàng)新互聯(lián)公司是成都老牌網(wǎng)站營銷服務(wù)商,為您提供成都網(wǎng)站建設(shè)、成都做網(wǎng)站、網(wǎng)站設(shè)計、html5、網(wǎng)站制作、成都品牌網(wǎng)站建設(shè)、小程序制作服務(wù),給眾多知名企業(yè)提供過好品質(zhì)的建站服務(wù)。

數(shù)據(jù)加載分為加載torchvision.datasets中的數(shù)據(jù)集以及加載自己使用的數(shù)據(jù)集兩種情況。

torchvision.datasets中的數(shù)據(jù)集

torchvision.datasets中自帶MNIST,Imagenet-12,CIFAR等數(shù)據(jù)集,所有的數(shù)據(jù)集都是torch.utils.data.Dataset的子類,都包含 _ _ len _ (獲取數(shù)據(jù)集長度)和 _ getItem _ _ (獲取數(shù)據(jù)集中每一項)兩個子方法。

Pytorch如何實現(xiàn)數(shù)據(jù)加載與數(shù)據(jù)預(yù)處理

Dataset源碼如上,可以看到其中包含了兩個沒有實現(xiàn)的子方法,之后所有的Dataet類都繼承該類,并根據(jù)數(shù)據(jù)情況定制這兩個子方法的具體實現(xiàn)。

因此當我們需要加載自己的數(shù)據(jù)集的時候也可以借鑒這種方法,只需要繼承torch.utils.data.Dataset類并重寫 init ,len,以及getitem這三個方法即可。這樣組著的類可以直接作為參數(shù)傳入到torch.util.data.DataLoader中去。

以CIFAR10為例 源碼:

class torchvision.datasets.CIFAR10(root, train=True, transform=None, target_transform=None, download=False)
root (string) – Root directory of dataset where directory cifar-10-batches-py exists or will be saved to if download is set to True.
train (bool, optional) – If True, creates dataset from training set, otherwise creates from test set.
transform (callable, optional) – A function/transform that takes in an PIL image and returns a transformed version. E.g, transforms.RandomCrop
target_transform (callable, optional) – A function/transform that takes in the target and transforms it.
download (bool, optional) – If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again.

加載自己的數(shù)據(jù)集

對于torchvision.datasets中有兩個不同的類,分別為DatasetFolder和ImageFolder,ImageFolder是繼承自DatasetFolder。

下面我們通過源碼來看一看folder文件中DatasetFolder和ImageFolder分別做了些什么

import torch.utils.data as data
from PIL import Image
import os
import os.path


def has_file_allowed_extension(filename, extensions): //檢查輸入是否是規(guī)定的擴展名
  """Checks if a file is an allowed extension.

  Args:
    filename (string): path to a file

  Returns:
    bool: True if the filename ends with a known image extension
  """
  filename_lower = filename.lower()
  return any(filename_lower.endswith(ext) for ext in extensions)


def find_classes(dir):
  classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))] //獲取root目錄下所有的文件夾名稱

  classes.sort()
  class_to_idx = {classes[i]: i for i in range(len(classes))} //生成類別名稱與類別id的對應(yīng)Dictionary
  return classes, class_to_idx


def make_dataset(dir, class_to_idx, extensions):
  images = []
  dir = os.path.expanduser(dir)// 將~和~user轉(zhuǎn)化為用戶目錄,對參數(shù)中出現(xiàn)~進行處理
  for target in sorted(os.listdir(dir)):
    d = os.path.join(dir, target)
    if not os.path.isdir(d):
      continue

    for root, _, fnames in sorted(os.walk(d)): //os.work包含三個部分,root代表該目錄路徑 _代表該路徑下的文件夾名稱集合,fnames代表該路徑下的文件名稱集合
      for fname in sorted(fnames):
        if has_file_allowed_extension(fname, extensions):
          path = os.path.join(root, fname)
          item = (path, class_to_idx[target])
          images.append(item)  //生成(訓(xùn)練樣本圖像目錄,訓(xùn)練樣本所屬類別)的元組

  return images  //返回上述元組的列表


class DatasetFolder(data.Dataset):
  """A generic data loader where the samples are arranged in this way: ::

    root/class_x/xxx.ext
    root/class_x/xxy.ext
    root/class_x/xxz.ext

    root/class_y/123.ext
    root/class_y/nsdf3.ext
    root/class_y/asd932_.ext

  Args:
    root (string): Root directory path.
    loader (callable): A function to load a sample given its path.
    extensions (list[string]): A list of allowed extensions.
    transform (callable, optional): A function/transform that takes in
      a sample and returns a transformed version.
      E.g, ``transforms.RandomCrop`` for images.
    target_transform (callable, optional): A function/transform that takes
      in the target and transforms it.

   Attributes:
    classes (list): List of the class names.
    class_to_idx (dict): Dict with items (class_name, class_index).
    samples (list): List of (sample path, class_index) tuples
  """

  def __init__(self, root, loader, extensions, transform=None, target_transform=None):
    classes, class_to_idx = find_classes(root)
    samples = make_dataset(root, class_to_idx, extensions)
    if len(samples) == 0:
      raise(RuntimeError("Found 0 files in subfolders of: " + root + "\n"
                "Supported extensions are: " + ",".join(extensions)))

    self.root = root
    self.loader = loader
    self.extensions = extensions

    self.classes = classes
    self.class_to_idx = class_to_idx
    self.samples = samples

    self.transform = transform
    self.target_transform = target_transform

  def __getitem__(self, index):
    """
    根據(jù)index獲取sample 返回值為(sample,target)元組,同時如果該類輸入?yún)?shù)中有transform和target_transform,torchvision.transforms類型的參數(shù)時,將獲取的元組分別執(zhí)行transform和target_transform中的數(shù)據(jù)轉(zhuǎn)換方法。
       Args:
      index (int): Index

    Returns:
      tuple: (sample, target) where target is class_index of the target class.
    """
    path, target = self.samples[index]
    sample = self.loader(path)
    if self.transform is not None:
      sample = self.transform(sample)
    if self.target_transform is not None:
      target = self.target_transform(target)

    return sample, target


  def __len__(self):
    return len(self.samples)

  def __repr__(self): //定義輸出對象格式 其中和__str__的區(qū)別是__repr__無論是print輸出還是直接輸出對象自身 都是以定義的格式進行輸出,而__str__ 只有在print輸出的時候會是以定義的格式進行輸出
    fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
    fmt_str += '  Number of datapoints: {}\n'.format(self.__len__())
    fmt_str += '  Root Location: {}\n'.format(self.root)
    tmp = '  Transforms (if any): '
    fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
    tmp = '  Target Transforms (if any): '
    fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
    return fmt_str



IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']


def pil_loader(path):
  # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
  with open(path, 'rb') as f:
    img = Image.open(f)
    return img.convert('RGB')


def accimage_loader(path):
  import accimage
  try:
    return accimage.Image(path)
  except IOError:
    # Potentially a decoding problem, fall back to PIL.Image
    return pil_loader(path)


def default_loader(path):
  from torchvision import get_image_backend
  if get_image_backend() == 'accimage':
    return accimage_loader(path)
  else:
    return pil_loader(path)


class ImageFolder(DatasetFolder): 
  """A generic data loader where the images are arranged in this way: ::

    root/dog/xxx.png
    root/dog/xxy.png
    root/dog/xxz.png

    root/cat/123.png
    root/cat/nsdf3.png
    root/cat/asd932_.png

  Args:
    root (string): Root directory path.
    transform (callable, optional): A function/transform that takes in an PIL image
      and returns a transformed version. E.g, ``transforms.RandomCrop``
    target_transform (callable, optional): A function/transform that takes in the
      target and transforms it.
    loader (callable, optional): A function to load an image given its path.

   Attributes:
    classes (list): List of the class names.
    class_to_idx (dict): Dict with items (class_name, class_index).
    imgs (list): List of (image path, class_index) tuples
  """
  def __init__(self, root, transform=None, target_transform=None,
         loader=default_loader):
    super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS,
                     transform=transform,
                     target_transform=target_transform)
    self.imgs = self.samples

如果自己所要加載的數(shù)據(jù)組織形式如下

root/dog/xxx.png
root/dog/xxy.png
root/dog/xxz.png
root/cat/123.png
root/cat/nsdf3.png
root/cat/asd932_.png

即不同類別的訓(xùn)練數(shù)據(jù)分別存儲在不同的文件夾中,這些文件夾都在root(即形如 D:/animals 或者 /usr/animals )路徑下

class torchvision.datasets.ImageFolder(root, transform=None, target_transform=None, loader=)

參數(shù)如下:

root (string) – Root directory path.
transform (callable, optional) – A function/transform that takes in an PIL image and returns a transformed version. E.g, transforms.RandomCrop
target_transform (callable, optional) – A function/transform that takes in the target and transforms it.
loader – A function to load an image given its path. 就是上述源碼中


__getitem__(index)
Parameters: index (int) – Index
Returns:  (sample, target) where target is class_index of the target class.
Return type:  tuple

可以通過torchvision.datasets.ImageFolder進行加載

img_data = torchvision.datasets.ImageFolder('D:/bnu/database/flower',
                      transform=transforms.Compose([
                        transforms.Scale(256),
                        transforms.CenterCrop(224),
                        transforms.ToTensor()])
                      )
print(len(img_data))
data_loader = torch.utils.data.DataLoader(img_data, batch_size=20,shuffle=True)
print(len(data_loader))

對于所有的訓(xùn)練樣本都在一個文件夾中 同時有一個對應(yīng)的txt文件每一行分別是對應(yīng)圖像的路徑以及其所屬的類別,可以參照上述class寫出對應(yīng)的加載類

def default_loader(path):
  return Image.open(path).convert('RGB')


class MyDataset(Dataset):
  def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
    fh = open(txt, 'r')
    imgs = []
    for line in fh:
      line = line.strip('\n')
      line = line.rstrip()
      words = line.split()
      imgs.append((words[0],int(words[1])))
    self.imgs = imgs
    self.transform = transform
    self.target_transform = target_transform
    self.loader = loader

  def __getitem__(self, index):
    fn, label = self.imgs[index]
    img = self.loader(fn)
    if self.transform is not None:
      img = self.transform(img)
    return img,label

  def __len__(self):
    return len(self.imgs)

train_data=MyDataset(txt='mnist_test.txt', transform=transforms.ToTensor())
data_loader = DataLoader(train_data, batch_size=100,shuffle=True)
print(len(data_loader))

DataLoader解析

位于torch.util.data.DataLoader中 源代碼

該接口的主要目的是將pytorch中已有的數(shù)據(jù)接口如torchvision.datasets.ImageFolder,或者自定義的數(shù)據(jù)讀取接口轉(zhuǎn)化按照

batch_size的大小封裝為Tensor,即相當于在內(nèi)置數(shù)據(jù)接口或者自定義數(shù)據(jù)接口的基礎(chǔ)上增加一維,大小為batch_size的大小,

得到的數(shù)據(jù)在之后可以通過封裝為Variable,作為模型的輸出

_ _ init _ _中所需的參數(shù)如下

1. dataset torch.utils.data.Dataset類的子類,可以是torchvision.datasets.ImageFolder等內(nèi)置類,也可是繼承了torch.utils.data.Dataset的自定義類
2. batch_size 每一個batch中包含的樣本個數(shù),默認是1 
3. shuffle 一般在訓(xùn)練集中采用,默認是false,設(shè)置為true則每一個epoch都會將訓(xùn)練樣本打亂
4. sampler 訓(xùn)練樣本選取策略,和shuffle是互斥的 如果 shuffle為true,該參數(shù)一定要為None
5. batch_sampler BatchSampler 一次產(chǎn)生一個 batch 的 indices,和sampler以及shuffle互斥,一般使用默認的即可
  上述Sampler的源代碼地址如下[源代碼](https://github.com/pytorch/pytorch/blob/master/torch/utils/data/sampler.py)
6. num_workers 用于數(shù)據(jù)加載的線程數(shù)量 默認為0 即只有主線程用來加載數(shù)據(jù)
7. collate_fn 用來聚合數(shù)據(jù)生成mini_batch

使用的時候一般為如下使用方法:

train_data=torch.utils.data.DataLoader(...) 
for i, (input, target) in enumerate(train_data): 
...

循環(huán)取DataLoader中的數(shù)據(jù)會觸發(fā)類中_ _ iter __方法,查看源代碼可知 其中調(diào)用的方法為 return _DataLoaderIter(self),因此需要查看 DataLoaderIter 這一內(nèi)部類

class DataLoaderIter(object):
  "Iterates once over the DataLoader's dataset, as specified by the sampler"

  def __init__(self, loader):
    self.dataset = loader.dataset
    self.collate_fn = loader.collate_fn
    self.batch_sampler = loader.batch_sampler
    self.num_workers = loader.num_workers
    self.pin_memory = loader.pin_memory and torch.cuda.is_available()
    self.timeout = loader.timeout
    self.done_event = threading.Event()

    self.sample_iter = iter(self.batch_sampler)

    if self.num_workers > 0:
      self.worker_init_fn = loader.worker_init_fn
      self.index_queue = multiprocessing.SimpleQueue()
      self.worker_result_queue = multiprocessing.SimpleQueue()
      self.batches_outstanding = 0
      self.worker_pids_set = False
      self.shutdown = False
      self.send_idx = 0
      self.rcvd_idx = 0
      self.reorder_dict = {}

      base_seed = torch.LongTensor(1).random_()[0]
      self.workers = [
        multiprocessing.Process(
          target=_worker_loop,
          args=(self.dataset, self.index_queue, self.worker_result_queue, self.collate_fn,
             base_seed + i, self.worker_init_fn, i))
        for i in range(self.num_workers)]

      if self.pin_memory or self.timeout > 0:
        self.data_queue = queue.Queue()
        self.worker_manager_thread = threading.Thread(
          target=_worker_manager_loop,
          args=(self.worker_result_queue, self.data_queue, self.done_event, self.pin_memory,
             torch.cuda.current_device()))
        self.worker_manager_thread.daemon = True
        self.worker_manager_thread.start()
      else:
        self.data_queue = self.worker_result_queue

      for w in self.workers:
        w.daemon = True # ensure that the worker exits on process exit
        w.start()

      _update_worker_pids(id(self), tuple(w.pid for w in self.workers))
      _set_SIGCHLD_handler()
      self.worker_pids_set = True

      # prime the prefetch loop
      for _ in range(2 * self.num_workers):
        self._put_indices()

感謝各位的閱讀!關(guān)于“Pytorch如何實現(xiàn)數(shù)據(jù)加載與數(shù)據(jù)預(yù)處理”這篇文章就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,讓大家可以學(xué)到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!

另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國服務(wù)器、虛擬主機、免備案服務(wù)器”等云主機租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務(wù)可用性高、性價比高”等特點與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場景需求。


新聞名稱:Pytorch如何實現(xiàn)數(shù)據(jù)加載與數(shù)據(jù)預(yù)處理-創(chuàng)新互聯(lián)
網(wǎng)頁地址:http://weahome.cn/article/iggge.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部