同步IO和異步IO,阻塞IO和非阻塞IO分別是什么,到底有什么區(qū)別?不同的人在不同的上下文下給出的答案是不同的。所以先限定一下本文的上下文。
創(chuàng)新互聯(lián)專注于企業(yè)營銷型網(wǎng)站建設(shè)、網(wǎng)站重做改版、牡丹江網(wǎng)站定制設(shè)計(jì)、自適應(yīng)品牌網(wǎng)站建設(shè)、成都h5網(wǎng)站建設(shè)、商城網(wǎng)站制作、集團(tuán)公司官網(wǎng)建設(shè)、成都外貿(mào)網(wǎng)站建設(shè)、高端網(wǎng)站制作、響應(yīng)式網(wǎng)頁設(shè)計(jì)等建站業(yè)務(wù),價(jià)格優(yōu)惠性價(jià)比高,為牡丹江等各大城市提供網(wǎng)站開發(fā)制作服務(wù)。
本文討論的背景是Linux環(huán)境下的network IO。
在進(jìn)行解釋之前,首先要說明幾個(gè)概念:
- 用戶空間和內(nèi)核空間
- 進(jìn)程切換
- 進(jìn)程的阻塞
- 文件描述符
- 緩存 I/O
現(xiàn)在操作系統(tǒng)都是采用虛擬存儲(chǔ)器,那么對(duì)32位操作系統(tǒng)而言,它的尋址空間(虛擬存儲(chǔ)空間)為4G(2的32次方)。操作系統(tǒng)的核心是內(nèi)核,獨(dú)立于普通的應(yīng)用程序,可以訪問受保護(hù)的內(nèi)存空間,也有訪問底層硬件設(shè)備的所有權(quán)限。為了保證用戶進(jìn)程不能直接操作內(nèi)核(kernel),保證內(nèi)核的安全,操心系統(tǒng)將虛擬空間劃分為兩部分,一部分為內(nèi)核空間,一部分為用戶空間。針對(duì)linux操作系統(tǒng)而言,將最高的1G字節(jié)(從虛擬地址0xC0000000到0xFFFFFFFF),供內(nèi)核使用,稱為內(nèi)核空間,而將較低的3G字節(jié)(從虛擬地址0x00000000到0xBFFFFFFF),供各個(gè)進(jìn)程使用,稱為用戶空間。
為了控制進(jìn)程的執(zhí)行,內(nèi)核必須有能力掛起正在CPU上運(yùn)行的進(jìn)程,并恢復(fù)以前掛起的某個(gè)進(jìn)程的執(zhí)行。這種行為被稱為進(jìn)程切換。因此可以說,任何進(jìn)程都是在操作系統(tǒng)內(nèi)核的支持下運(yùn)行的,是與內(nèi)核緊密相關(guān)的。
從一個(gè)進(jìn)程的運(yùn)行轉(zhuǎn)到另一個(gè)進(jìn)程上運(yùn)行,這個(gè)過程中經(jīng)過下面這些變化:
1. 保存處理機(jī)上下文,包括程序計(jì)數(shù)器和其他寄存器。
2. 更新PCB信息。
3. 把進(jìn)程的PCB移入相應(yīng)的隊(duì)列,如就緒、在某事件阻塞等隊(duì)列。
4. 選擇另一個(gè)進(jìn)程執(zhí)行,并更新其PCB。
5. 更新內(nèi)存管理的數(shù)據(jù)結(jié)構(gòu)。
6. 恢復(fù)處理機(jī)上下文。
注:總而言之就是很耗資源,具體的可以參考這篇文章:進(jìn)程切換
正在執(zhí)行的進(jìn)程,由于期待的某些事件未發(fā)生,如請(qǐng)求系統(tǒng)資源失敗、等待某種操作的完成、新數(shù)據(jù)尚未到達(dá)或無新工作做等,則由系統(tǒng)自動(dòng)執(zhí)行阻塞原語(Block),使自己由運(yùn)行狀態(tài)變?yōu)樽枞麪顟B(tài)??梢?,進(jìn)程的阻塞是進(jìn)程自身的一種主動(dòng)行為,也因此只有處于運(yùn)行態(tài)的進(jìn)程(獲得CPU),才可能將其轉(zhuǎn)為阻塞狀態(tài)。當(dāng)進(jìn)程進(jìn)入阻塞狀態(tài),是不占用CPU資源的
。
文件描述符(File descriptor)是計(jì)算機(jī)科學(xué)中的一個(gè)術(shù)語,是一個(gè)用于表述指向文件的引用的抽象化概念。
文件描述符在形式上是一個(gè)非負(fù)整數(shù)。實(shí)際上,它是一個(gè)索引值,指向內(nèi)核為每一個(gè)進(jìn)程所維護(hù)的該進(jìn)程打開文件的記錄表。當(dāng)程序打開一個(gè)現(xiàn)有文件或者創(chuàng)建一個(gè)新文件時(shí),內(nèi)核向進(jìn)程返回一個(gè)文件描述符。在程序設(shè)計(jì)中,一些涉及底層的程序編寫往往會(huì)圍繞著文件描述符展開。但是文件描述符這一概念往往只適用于UNIX、Linux這樣的操作系統(tǒng)。
緩存 I/O 又被稱作標(biāo)準(zhǔn) I/O,大多數(shù)文件系統(tǒng)的默認(rèn) I/O 操作都是緩存 I/O。在 Linux 的緩存 I/O 機(jī)制中,操作系統(tǒng)會(huì)將 I/O 的數(shù)據(jù)緩存在文件系統(tǒng)的頁緩存( page cache )中,也就是說,數(shù)據(jù)會(huì)先被拷貝到操作系統(tǒng)內(nèi)核的緩沖區(qū)中,然后才會(huì)從操作系統(tǒng)內(nèi)核的緩沖區(qū)拷貝到應(yīng)用程序的地址空間。
緩存 I/O 的缺點(diǎn):
數(shù)據(jù)在傳輸過程中需要在應(yīng)用程序地址空間和內(nèi)核進(jìn)行多次數(shù)據(jù)拷貝操作,這些數(shù)據(jù)拷貝操作所帶來的 CPU 以及內(nèi)存開銷是非常大的。
剛才說了,對(duì)于一次IO訪問(以read舉例),數(shù)據(jù)會(huì)先被拷貝到操作系統(tǒng)內(nèi)核的緩沖區(qū)中,然后才會(huì)從操作系統(tǒng)內(nèi)核的緩沖區(qū)拷貝到應(yīng)用程序的地址空間。所以說,當(dāng)一個(gè)read操作發(fā)生時(shí),它會(huì)經(jīng)歷兩個(gè)階段:
1. 等待數(shù)據(jù)準(zhǔn)備 (Waiting for the data to be ready)
2. 將數(shù)據(jù)從內(nèi)核拷貝到進(jìn)程中 (Copying the data from the kernel to the process)
正式因?yàn)檫@兩個(gè)階段,linux系統(tǒng)產(chǎn)生了下面五種網(wǎng)絡(luò)模式的方案。
- 阻塞 I/O(blocking IO)
- 非阻塞 I/O(nonblocking IO)
- I/O 多路復(fù)用( IO multiplexing)
- 信號(hào)驅(qū)動(dòng) I/O( signal driven IO)
- 異步 I/O(asynchronous IO)
注:由于signal driven IO在實(shí)際中并不常用,所以我這只提及剩下的四種IO Model。
在linux中,默認(rèn)情況下所有的socket都是blocking,一個(gè)典型的讀操作流程大概是這樣:
當(dāng)用戶進(jìn)程調(diào)用了recvfrom這個(gè)系統(tǒng)調(diào)用,kernel就開始了IO的第一個(gè)階段:準(zhǔn)備數(shù)據(jù)(對(duì)于網(wǎng)絡(luò)IO來說,很多時(shí)候數(shù)據(jù)在一開始還沒有到達(dá)。比如,還沒有收到一個(gè)完整的UDP包。這個(gè)時(shí)候kernel就要等待足夠的數(shù)據(jù)到來)。這個(gè)過程需要等待,也就是說數(shù)據(jù)被拷貝到操作系統(tǒng)內(nèi)核的緩沖區(qū)中是需要一個(gè)過程的。而在用戶進(jìn)程這邊,整個(gè)進(jìn)程會(huì)被阻塞(當(dāng)然,是進(jìn)程自己選擇的阻塞)。當(dāng)kernel一直等到數(shù)據(jù)準(zhǔn)備好了,它就會(huì)將數(shù)據(jù)從kernel中拷貝到用戶內(nèi)存,然后kernel返回結(jié)果,用戶進(jìn)程才解除block的狀態(tài),重新運(yùn)行起來。
所以,blocking IO的特點(diǎn)就是在IO執(zhí)行的兩個(gè)階段都被block了。
linux下,可以通過設(shè)置socket使其變?yōu)閚on-blocking。當(dāng)對(duì)一個(gè)non-blocking socket執(zhí)行讀操作時(shí),流程是這個(gè)樣子:
當(dāng)用戶進(jìn)程發(fā)出read操作時(shí),如果kernel中的數(shù)據(jù)還沒有準(zhǔn)備好,那么它并不會(huì)block用戶進(jìn)程,而是立刻返回一個(gè)error。從用戶進(jìn)程角度講 ,它發(fā)起一個(gè)read操作后,并不需要等待,而是馬上就得到了一個(gè)結(jié)果。用戶進(jìn)程判斷結(jié)果是一個(gè)error時(shí),它就知道數(shù)據(jù)還沒有準(zhǔn)備好,于是它可以再次發(fā)送read操作。一旦kernel中的數(shù)據(jù)準(zhǔn)備好了,并且又再次收到了用戶進(jìn)程的system call,那么它馬上就將數(shù)據(jù)拷貝到了用戶內(nèi)存,然后返回。
所以,nonblocking IO的特點(diǎn)是用戶進(jìn)程需要不斷的主動(dòng)詢問kernel數(shù)據(jù)好了沒有。
IO multiplexing就是我們說的select,poll,epoll,有些地方也稱這種IO方式為event driven IO。select/epoll的好處就在于單個(gè)process就可以同時(shí)處理多個(gè)網(wǎng)絡(luò)連接的IO。它的基本原理就是select,poll,epoll這個(gè)function會(huì)不斷的輪詢所負(fù)責(zé)的所有socket,當(dāng)某個(gè)socket有數(shù)據(jù)到達(dá)了,就通知用戶進(jìn)程。
當(dāng)用戶進(jìn)程調(diào)用了select,那么整個(gè)進(jìn)程會(huì)被block
,而同時(shí),kernel會(huì)“監(jiān)視”所有select負(fù)責(zé)的socket,當(dāng)任何一個(gè)socket中的數(shù)據(jù)準(zhǔn)備好了,select就會(huì)返回。這個(gè)時(shí)候用戶進(jìn)程再調(diào)用read操作,將數(shù)據(jù)從kernel拷貝到用戶進(jìn)程。
所以,I/O 多路復(fù)用的特點(diǎn)是通過一種機(jī)制一個(gè)進(jìn)程能同時(shí)等待多個(gè)文件描述符,而這些文件描述符(套接字描述符)其中的任意一個(gè)進(jìn)入讀就緒狀態(tài),select()函數(shù)就可以返回。
這個(gè)圖和blocking IO的圖其實(shí)并沒有太大的不同,事實(shí)上,還更差一些。因?yàn)檫@里需要使用兩個(gè)system call (select 和 recvfrom),而blocking IO只調(diào)用了一個(gè)system call (recvfrom)。但是,用select的優(yōu)勢(shì)在于它可以同時(shí)處理多個(gè)connection。
所以,如果處理的連接數(shù)不是很高的話,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延遲還更大。select/epoll的優(yōu)勢(shì)并不是對(duì)于單個(gè)連接能處理得更快,而是在于能處理更多的連接。)
在IO multiplexing Model中,實(shí)際中,對(duì)于每一個(gè)socket,一般都設(shè)置成為non-blocking,但是,如上圖所示,整個(gè)用戶的process其實(shí)是一直被block的。只不過process是被select這個(gè)函數(shù)block,而不是被socket IO給block。
inux下的asynchronous IO其實(shí)用得很少。先看一下它的流程:
用戶進(jìn)程發(fā)起read操作之后,立刻就可以開始去做其它的事。而另一方面,從kernel的角度,當(dāng)它受到一個(gè)asynchronous read之后,首先它會(huì)立刻返回,所以不會(huì)對(duì)用戶進(jìn)程產(chǎn)生任何block。然后,kernel會(huì)等待數(shù)據(jù)準(zhǔn)備完成,然后將數(shù)據(jù)拷貝到用戶內(nèi)存,當(dāng)這一切都完成之后,kernel會(huì)給用戶進(jìn)程發(fā)送一個(gè)signal,告訴它read操作完成了。
調(diào)用blocking IO會(huì)一直block住對(duì)應(yīng)的進(jìn)程直到操作完成,而non-blocking IO在kernel還準(zhǔn)備數(shù)據(jù)的情況下會(huì)立刻返回。
在說明synchronous IO和asynchronous IO的區(qū)別之前,需要先給出兩者的定義。POSIX的定義是這樣子的:
- A synchronous I/O operation causes the requesting process to be blocked until that I/O operation completes;
- An asynchronous I/O operation does not cause the requesting process to be blocked;
兩者的區(qū)別就在于synchronous IO做”IO operation”的時(shí)候會(huì)將process阻塞。按照這個(gè)定義,之前所述的blocking IO,non-blocking IO,IO multiplexing都屬于synchronous IO。
有人會(huì)說,non-blocking IO并沒有被block啊。這里有個(gè)非?!敖苹钡牡胤?,定義中所指的”IO operation”是指真實(shí)的IO操作,就是例子中的recvfrom這個(gè)system call。non-blocking IO在執(zhí)行recvfrom這個(gè)system call的時(shí)候,如果kernel的數(shù)據(jù)沒有準(zhǔn)備好,這時(shí)候不會(huì)block進(jìn)程。但是,當(dāng)kernel中數(shù)據(jù)準(zhǔn)備好的時(shí)候,recvfrom會(huì)將數(shù)據(jù)從kernel拷貝到用戶內(nèi)存中,這個(gè)時(shí)候進(jìn)程是被block了,在這段時(shí)間內(nèi),進(jìn)程是被block的。
而asynchronous IO則不一樣,當(dāng)進(jìn)程發(fā)起IO 操作之后,就直接返回再也不理睬了,直到kernel發(fā)送一個(gè)信號(hào),告訴進(jìn)程說IO完成。在這整個(gè)過程中,進(jìn)程完全沒有被block。
各個(gè)IO Model的比較如圖所示:
通過上面的圖片,可以發(fā)現(xiàn)non-blocking IO和asynchronous IO的區(qū)別還是很明顯的。在non-blocking IO中,雖然進(jìn)程大部分時(shí)間都不會(huì)被block,但是它仍然要求進(jìn)程去主動(dòng)的check,并且當(dāng)數(shù)據(jù)準(zhǔn)備完成以后,也需要進(jìn)程主動(dòng)的再次調(diào)用recvfrom來將數(shù)據(jù)拷貝到用戶內(nèi)存。而asynchronous IO則完全不同。它就像是用戶進(jìn)程將整個(gè)IO操作交給了他人(kernel)完成,然后他人做完后發(fā)信號(hào)通知。在此期間,用戶進(jìn)程不需要去檢查IO操作的狀態(tài),也不需要主動(dòng)的去拷貝數(shù)據(jù)。
select,poll,epoll都是IO多路復(fù)用的機(jī)制。I/O多路復(fù)用就是通過一種機(jī)制,一個(gè)進(jìn)程可以監(jiān)視多個(gè)描述符,一旦某個(gè)描述符就緒(一般是讀就緒或者寫就緒),能夠通知程序進(jìn)行相應(yīng)的讀寫操作。但select,poll,epoll本質(zhì)上都是同步I/O,因?yàn)樗麄兌夹枰谧x寫事件就緒后自己負(fù)責(zé)進(jìn)行讀寫,也就是說這個(gè)讀寫過程是阻塞的,而異步I/O則無需自己負(fù)責(zé)進(jìn)行讀寫,異步I/O的實(shí)現(xiàn)會(huì)負(fù)責(zé)把數(shù)據(jù)從內(nèi)核拷貝到用戶空間。(這里啰嗦下)
int select (int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
select 函數(shù)監(jiān)視的文件描述符分3類,分別是writefds、readfds、和exceptfds。調(diào)用后select函數(shù)會(huì)阻塞,直到有描述副就緒(有數(shù)據(jù) 可讀、可寫、或者有except),或者超時(shí)(timeout指定等待時(shí)間,如果立即返回設(shè)為null即可),函數(shù)返回。當(dāng)select函數(shù)返回后,可以 通過遍歷fdset,來找到就緒的描述符。
select目前幾乎在所有的平臺(tái)上支持,其良好跨平臺(tái)支持也是它的一個(gè)優(yōu)點(diǎn)。select的一 個(gè)缺點(diǎn)在于單個(gè)進(jìn)程能夠監(jiān)視的文件描述符的數(shù)量存在最大限制,在Linux上一般為1024,可以通過修改宏定義甚至重新編譯內(nèi)核的方式提升這一限制,但 是這樣也會(huì)造成效率的降低。
int poll (struct pollfd *fds, unsigned int nfds, int timeout);
不同與select使用三個(gè)位圖來表示三個(gè)fdset的方式,poll使用一個(gè) pollfd的指針實(shí)現(xiàn)。
struct pollfd { int fd; /* file descriptor */ short events; /* requested events to watch */ short revents; /* returned events witnessed */};
pollfd結(jié)構(gòu)包含了要監(jiān)視的event和發(fā)生的event,不再使用select“參數(shù)-值”傳遞的方式。同時(shí),pollfd并沒有最大數(shù)量限制(但是數(shù)量過大后性能也是會(huì)下降)。 和select函數(shù)一樣,poll返回后,需要輪詢pollfd來獲取就緒的描述符。
從上面看,select和poll都需要在返回后,
通過遍歷文件描述符來獲取已經(jīng)就緒的socket
。事實(shí)上,同時(shí)連接的大量客戶端在一時(shí)刻可能只有很少的處于就緒狀態(tài),因此隨著監(jiān)視的描述符數(shù)量的增長,其效率也會(huì)線性下降。
epoll是在2.6內(nèi)核中提出的,是之前的select和poll的增強(qiáng)版本。相對(duì)于select和poll來說,epoll更加靈活,沒有描述符限制。epoll使用一個(gè)文件描述符管理多個(gè)描述符,將用戶關(guān)系的文件描述符的事件存放到內(nèi)核的一個(gè)事件表中,這樣在用戶空間和內(nèi)核空間的copy只需一次。
epoll操作過程需要三個(gè)接口,分別如下:
int epoll_create(int size);//創(chuàng)建一個(gè)epoll的句柄,size用來告訴內(nèi)核這個(gè)監(jiān)聽的數(shù)目一共有多大int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
1. int epoll_create(int size);
創(chuàng)建一個(gè)epoll的句柄,size用來告訴內(nèi)核這個(gè)監(jiān)聽的數(shù)目一共有多大,這個(gè)參數(shù)不同于select()中的第一個(gè)參數(shù),給出最大監(jiān)聽的fd+1的值,參數(shù)size并不是限制了epoll所能監(jiān)聽的描述符最大個(gè)數(shù),只是對(duì)內(nèi)核初始分配內(nèi)部數(shù)據(jù)結(jié)構(gòu)的一個(gè)建議
。
當(dāng)創(chuàng)建好epoll句柄后,它就會(huì)占用一個(gè)fd值,在linux下如果查看/proc/進(jìn)程id/fd/,是能夠看到這個(gè)fd的,所以在使用完epoll后,必須調(diào)用close()關(guān)閉,否則可能導(dǎo)致fd被耗盡。
2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
函數(shù)是對(duì)指定描述符fd執(zhí)行op操作。
- epfd:是epoll_create()的返回值。
- op:表示op操作,用三個(gè)宏來表示:添加EPOLL_CTL_ADD,刪除EPOLL_CTL_DEL,修改EPOLL_CTL_MOD。分別添加、刪除和修改對(duì)fd的監(jiān)聽事件。
- fd:是需要監(jiān)聽的fd(文件描述符)
- epoll_event:是告訴內(nèi)核需要監(jiān)聽什么事,struct epoll_event結(jié)構(gòu)如下:
struct epoll_event { __uint32_t events; /* Epoll events */ epoll_data_t data; /* User data variable */};//events可以是以下幾個(gè)宏的集合:EPOLLIN :表示對(duì)應(yīng)的文件描述符可以讀(包括對(duì)端SOCKET正常關(guān)閉); EPOLLOUT:表示對(duì)應(yīng)的文件描述符可以寫; EPOLLPRI:表示對(duì)應(yīng)的文件描述符有緊急的數(shù)據(jù)可讀(這里應(yīng)該表示有帶外數(shù)據(jù)到來); EPOLLERR:表示對(duì)應(yīng)的文件描述符發(fā)生錯(cuò)誤; EPOLLHUP:表示對(duì)應(yīng)的文件描述符被掛斷; EPOLLET: 將EPOLL設(shè)為邊緣觸發(fā)(Edge Triggered)模式,這是相對(duì)于水平觸發(fā)(Level Triggered)來說的。 EPOLLONESHOT:只監(jiān)聽一次事件,當(dāng)監(jiān)聽完這次事件之后,如果還需要繼續(xù)監(jiān)聽這個(gè)socket的話,需要再次把這個(gè)socket加入到EPOLL隊(duì)列里
3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
等待epfd上的io事件,最多返回maxevents個(gè)事件。
參數(shù)events用來從內(nèi)核得到事件的集合,maxevents告之內(nèi)核這個(gè)events有多大,這個(gè)maxevents的值不能大于創(chuàng)建epoll_create()時(shí)的size,參數(shù)timeout是超時(shí)時(shí)間(毫秒,0會(huì)立即返回,-1將不確定,也有說法說是永久阻塞)。該函數(shù)返回需要處理的事件數(shù)目,如返回0表示已超時(shí)。
epoll對(duì)文件描述符的操作有兩種模式:LT(level trigger)和ET(edge trigger)。LT模式是默認(rèn)模式,LT模式與ET模式的區(qū)別如下:
LT模式:當(dāng)epoll_wait檢測到描述符事件發(fā)生并將此事件通知應(yīng)用程序,應(yīng)用程序可以不立即處理該事件
。下次調(diào)用epoll_wait時(shí),會(huì)再次響應(yīng)應(yīng)用程序并通知此事件。
ET模式:當(dāng)epoll_wait檢測到描述符事件發(fā)生并將此事件通知應(yīng)用程序,應(yīng)用程序必須立即處理該事件
。如果不處理,下次調(diào)用epoll_wait時(shí),不會(huì)再次響應(yīng)應(yīng)用程序并通知此事件。
LT(level triggered)是缺省的工作方式,并且同時(shí)支持block和no-block socket.在這種做法中,內(nèi)核告訴你一個(gè)文件描述符是否就緒了,然后你可以對(duì)這個(gè)就緒的fd進(jìn)行IO操作。如果你不作任何操作,內(nèi)核還是會(huì)繼續(xù)通知你的。
ET(edge-triggered)是高速工作方式,只支持no-block socket。在這種模式下,當(dāng)描述符從未就緒變?yōu)榫途w時(shí),內(nèi)核通過epoll告訴你。然后它會(huì)假設(shè)你知道文件描述符已經(jīng)就緒,并且不會(huì)再為那個(gè)文件描述符發(fā)送更多的就緒通知,直到你做了某些操作導(dǎo)致那個(gè)文件描述符不再為就緒狀態(tài)了(比如,你在發(fā)送,接收或者接收請(qǐng)求,或者發(fā)送接收的數(shù)據(jù)少于一定量時(shí)導(dǎo)致了一個(gè)EWOULDBLOCK 錯(cuò)誤)。但是請(qǐng)注意,如果一直不對(duì)這個(gè)fd作IO操作(從而導(dǎo)致它再次變成未就緒),內(nèi)核不會(huì)發(fā)送更多的通知(only once)
ET模式在很大程度上減少了epoll事件被重復(fù)觸發(fā)的次數(shù),因此效率要比LT模式高。epoll工作在ET模式的時(shí)候,必須使用非阻塞套接口,以避免由于一個(gè)文件句柄的阻塞讀/阻塞寫操作把處理多個(gè)文件描述符的任務(wù)餓死。
假如有這樣一個(gè)例子:
1. 我們已經(jīng)把一個(gè)用來從管道中讀取數(shù)據(jù)的文件句柄(RFD)添加到epoll描述符
2. 這個(gè)時(shí)候從管道的另一端被寫入了2KB的數(shù)據(jù)
3. 調(diào)用epoll_wait(2),并且它會(huì)返回RFD,說明它已經(jīng)準(zhǔn)備好讀取操作
4. 然后我們讀取了1KB的數(shù)據(jù)
5. 調(diào)用epoll_wait(2)......
LT模式:
如果是LT模式,那么在第5步調(diào)用epoll_wait(2)之后,仍然能受到通知。
ET模式:
如果我們?cè)诘?步將RFD添加到epoll描述符的時(shí)候使用了EPOLLET標(biāo)志,那么在第5步調(diào)用epoll_wait(2)之后將有可能會(huì)掛起,因?yàn)槭S嗟臄?shù)據(jù)還存在于文件的輸入緩沖區(qū)內(nèi),而且數(shù)據(jù)發(fā)出端還在等待一個(gè)針對(duì)已經(jīng)發(fā)出數(shù)據(jù)的反饋信息。只有在監(jiān)視的文件句柄上發(fā)生了某個(gè)事件的時(shí)候 ET 工作模式才會(huì)匯報(bào)事件。因此在第5步的時(shí)候,調(diào)用者可能會(huì)放棄等待仍在存在于文件輸入緩沖區(qū)內(nèi)的剩余數(shù)據(jù)。
當(dāng)使用epoll的ET模型來工作時(shí),當(dāng)產(chǎn)生了一個(gè)EPOLLIN事件后, 讀數(shù)據(jù)的時(shí)候需要考慮的是當(dāng)recv()返回的大小如果等于請(qǐng)求的大小,那么很有可能是緩沖區(qū)還有數(shù)據(jù)未讀完,也意味著該次事件還沒有處理完,所以還需要再次讀?。?/p>
while(rs){ buflen = recv(activeevents[i].data.fd, buf, sizeof(buf), 0); if(buflen < 0){ // 由于是非阻塞的模式,所以當(dāng)errno為EAGAIN時(shí),表示當(dāng)前緩沖區(qū)已無數(shù)據(jù)可讀 // 在這里就當(dāng)作是該次事件已處理處. if(errno == EAGAIN){ break; } else{ return; } } else if(buflen == 0){ // 這里表示對(duì)端的socket已正常關(guān)閉. } if(buflen == sizeof(buf){ rs = 1; // 需要再次讀取 } else{ rs = 0; } }
Linux中的EAGAIN含義
Linux環(huán)境下開發(fā)經(jīng)常會(huì)碰到很多錯(cuò)誤(設(shè)置errno),其中EAGAIN是其中比較常見的一個(gè)錯(cuò)誤(比如用在非阻塞操作中)。 從字面上來看,是提示再試一次。這個(gè)錯(cuò)誤經(jīng)常出現(xiàn)在當(dāng)應(yīng)用程序進(jìn)行一些非阻塞(non-blocking)操作(對(duì)文件或socket)的時(shí)候。
例如,以 O_NONBLOCK的標(biāo)志打開文件/socket/FIFO,如果你連續(xù)做read操作而沒有數(shù)據(jù)可讀。此時(shí)程序不會(huì)阻塞起來等待數(shù)據(jù)準(zhǔn)備就緒返回,read函數(shù)會(huì)返回一個(gè)錯(cuò)誤EAGAIN,提示你的應(yīng)用程序現(xiàn)在沒有數(shù)據(jù)可讀請(qǐng)稍后再試。 又例如,當(dāng)一個(gè)系統(tǒng)調(diào)用(比如fork)因?yàn)闆]有足夠的資源(比如虛擬內(nèi)存)而執(zhí)行失敗,返回EAGAIN提示其再調(diào)用一次(也許下次就能成功)。
下面是一段不完整的代碼且格式不對(duì),意在表述上面的過程,去掉了一些模板代碼。
#define IPADDRESS "127.0.0.1"#define PORT 8787#define MAXSIZE 1024#define LISTENQ 5#define FDSIZE 1000#define EPOLLEVENTS 100listenfd = socket_bind(IPADDRESS,PORT);struct epoll_event events[EPOLLEVENTS];//創(chuàng)建一個(gè)描述符epollfd = epoll_create(FDSIZE);//添加監(jiān)聽描述符事件add_event(epollfd,listenfd,EPOLLIN);//循環(huán)等待for ( ; ; ){ //該函數(shù)返回已經(jīng)準(zhǔn)備好的描述符事件數(shù)目 ret = epoll_wait(epollfd,events,EPOLLEVENTS,-1); //處理接收到的連接 handle_events(epollfd,events,ret,listenfd,buf); }//事件處理函數(shù)static void handle_events(int epollfd,struct epoll_event *events,int num,int listenfd,char *buf){ int i; int fd; //進(jìn)行遍歷;這里只要遍歷已經(jīng)準(zhǔn)備好的io事件。num并不是當(dāng)初epoll_create時(shí)的FDSIZE。 for (i = 0;i < num;i++) { fd = events[i].data.fd; //根據(jù)描述符的類型和事件類型進(jìn)行處理 if ((fd == listenfd) &&(events[i].events & EPOLLIN)) handle_accpet(epollfd,listenfd); else if (events[i].events & EPOLLIN) do_read(epollfd,fd,buf); else if (events[i].events & EPOLLOUT) do_write(epollfd,fd,buf); } }//添加事件static void add_event(int epollfd,int fd,int state){ struct epoll_event ev; ev.events = state; ev.data.fd = fd; epoll_ctl(epollfd,EPOLL_CTL_ADD,fd,&ev); }//處理接收到的連接static void handle_accpet(int epollfd,int listenfd){ int clifd; struct sockaddr_in cliaddr; socklen_t cliaddrlen; clifd = accept(listenfd,(struct sockaddr*)&cliaddr,&cliaddrlen); if (clifd == -1) perror("accpet error:"); else { printf("accept a new client: %s:%d\n",inet_ntoa(cliaddr.sin_addr),cliaddr.sin_port); //添加一個(gè)客戶描述符和事件 add_event(epollfd,clifd,EPOLLIN); } }//讀處理static void do_read(int epollfd,int fd,char *buf){ int nread; nread = read(fd,buf,MAXSIZE); if (nread == -1) { perror("read error:"); close(fd); //記住close fd delete_event(epollfd,fd,EPOLLIN); //刪除監(jiān)聽 } else if (nread == 0) { fprintf(stderr,"client close.\n"); close(fd); //記住close fd delete_event(epollfd,fd,EPOLLIN); //刪除監(jiān)聽 } else { printf("read message is : %s",buf); //修改描述符對(duì)應(yīng)的事件,由讀改為寫 modify_event(epollfd,fd,EPOLLOUT); } }//寫處理static void do_write(int epollfd,int fd,char *buf) { int nwrite; nwrite = write(fd,buf,strlen(buf)); if (nwrite == -1){ perror("write error:"); close(fd); //記住close fd delete_event(epollfd,fd,EPOLLOUT); //刪除監(jiān)聽 }else{ modify_event(epollfd,fd,EPOLLIN); } memset(buf,0,MAXSIZE); }//刪除事件static void delete_event(int epollfd,int fd,int state) { struct epoll_event ev; ev.events = state; ev.data.fd = fd; epoll_ctl(epollfd,EPOLL_CTL_DEL,fd,&ev); }//修改事件static void modify_event(int epollfd,int fd,int state){ struct epoll_event ev; ev.events = state; ev.data.fd = fd; epoll_ctl(epollfd,EPOLL_CTL_MOD,fd,&ev); }//注:另外一端我就省了
在 select/poll中,進(jìn)程只有在調(diào)用一定的方法后,內(nèi)核才對(duì)所有監(jiān)視的文件描述符進(jìn)行掃描,而epoll事先通過epoll_ctl()來注冊(cè)一 個(gè)文件描述符,一旦基于某個(gè)文件描述符就緒時(shí),內(nèi)核會(huì)采用類似callback的回調(diào)機(jī)制,迅速激活這個(gè)文件描述符,當(dāng)進(jìn)程調(diào)用epoll_wait() 時(shí)便得到通知。(此處去掉了遍歷文件描述符,而是通過監(jiān)聽回調(diào)的的機(jī)制
。這正是epoll的魅力所在。)
epoll的優(yōu)點(diǎn)主要是一下幾個(gè)方面:
1. 監(jiān)視的描述符數(shù)量不受限制,它所支持的FD上限是最大可以打開文件的數(shù)目,這個(gè)數(shù)字一般遠(yuǎn)大于2048,舉個(gè)例子,在1GB內(nèi)存的機(jī)器上大約是10萬左 右,具體數(shù)目可以cat /proc/sys/fs/file-max察看,一般來說這個(gè)數(shù)目和系統(tǒng)內(nèi)存關(guān)系很大。select的最大缺點(diǎn)就是進(jìn)程打開的fd是有數(shù)量限制的。這對(duì) 于連接數(shù)量比較大的服務(wù)器來說根本不能滿足。雖然也可以選擇多進(jìn)程的解決方案( Apache就是這樣實(shí)現(xiàn)的),不過雖然linux上面創(chuàng)建進(jìn)程的代價(jià)比較小,但仍舊是不可忽視的,加上進(jìn)程間數(shù)據(jù)同步遠(yuǎn)比不上線程間同步的高效,所以也不是一種完美的方案。
IO的效率不會(huì)隨著監(jiān)視fd的數(shù)量的增長而下降。epoll不同于select和poll輪詢的方式,而是通過每個(gè)fd定義的回調(diào)函數(shù)來實(shí)現(xiàn)的。只有就緒的fd才會(huì)執(zhí)行回調(diào)函數(shù)。
如果沒有大量的idle -connection或者dead-connection,epoll的效率并不會(huì)比select/poll高很多,但是當(dāng)遇到大量的idle- connection,就會(huì)發(fā)現(xiàn)epoll的效率大大高于select/poll。