??spark一個(gè)最重要的特性就是對(duì)數(shù)據(jù)集在各個(gè)節(jié)點(diǎn)的分區(qū)進(jìn)行控制??刂茢?shù)據(jù)分布可以減少網(wǎng)絡(luò)開(kāi)銷(xiāo),極大地提升整體性能。
創(chuàng)新互聯(lián)專(zhuān)注為客戶提供全方位的互聯(lián)網(wǎng)綜合服務(wù),包含不限于成都網(wǎng)站制作、成都網(wǎng)站建設(shè)、蒲江縣網(wǎng)絡(luò)推廣、微信小程序開(kāi)發(fā)、蒲江縣網(wǎng)絡(luò)營(yíng)銷(xiāo)、蒲江縣企業(yè)策劃、蒲江縣品牌公關(guān)、搜索引擎seo、人物專(zhuān)訪、企業(yè)宣傳片、企業(yè)代運(yùn)營(yíng)等,從售前售中售后,我們都將竭誠(chéng)為您服務(wù),您的肯定,是我們最大的嘉獎(jiǎng);創(chuàng)新互聯(lián)為所有大學(xué)生創(chuàng)業(yè)者提供蒲江縣建站搭建服務(wù),24小時(shí)服務(wù)熱線:18980820575,官方網(wǎng)址:www.cdcxhl.com
??只有Pair RDD才有分區(qū),非Pair RDD分區(qū)的值是None。如果RDD只被掃描一次,沒(méi)必要預(yù)先分區(qū)處理;如果RDD多次在諸如連接這種基于鍵的操作中使用時(shí),分區(qū)才有作用。
??分區(qū)器決定了RDD的分區(qū)個(gè)數(shù)及每條數(shù)據(jù)最終屬于哪個(gè)分區(qū)。
??spark提供了兩個(gè)分區(qū)器:HashPartitioner和RangePartitioner,它們都繼承于org.apache.spark.Partitioner類(lèi)并實(shí)現(xiàn)三個(gè)方法。
??HashPartitioner分區(qū)執(zhí)行原理:對(duì)于給定的key,計(jì)算其hashCode,再除以分區(qū)數(shù)取余,最后的值就是這個(gè)key所屬的分區(qū)ID。實(shí)現(xiàn)如下:
class HashPartitioner(partitions: Int) extends Partitioner {
require(partitions >= 0, s"Number of partitions ($partitions) cannot be negative.")
def numPartitions: Int = partitions
def getPartition(key: Any): Int = key match {
case null => 0
case _ => Utils.nonNegativeMod(key.hashCode, numPartitions)
}
override def equals(other: Any): Boolean = other match {
case h: HashPartitioner =>
h.numPartitions == numPartitions
case _ =>
false
}
override def hashCode: Int = numPartitions
}
??HashPartitioner分區(qū)可能導(dǎo)致每個(gè)分區(qū)中數(shù)據(jù)量的不均勻。而RangePartitioner分區(qū)則盡量保證每個(gè)分區(qū)中數(shù)據(jù)量的均勻,將一定范圍內(nèi)的數(shù)映射到某一個(gè)分區(qū)內(nèi)。分區(qū)與分區(qū)之間數(shù)據(jù)是有序的,但分區(qū)內(nèi)的元素是不能保證順序的。
??RangePartitioner分區(qū)執(zhí)行原理:
class RangePartitioner[K: Ordering : ClassTag, V](
partitions: Int,
rdd: RDD[_ <: Product2[K, V]],
private var ascending: Boolean = true)
extends Partitioner {
// We allow partitions = 0, which happens when sorting an empty RDD under the default settings.
require(partitions >= 0, s"Number of partitions cannot be negative but found $partitions.")
// 獲取RDD中K類(lèi)型數(shù)據(jù)的排序器
private var ordering = implicitly[Ordering[K]]
// An array of upper bounds for the first (partitions - 1) partitions
private var rangeBounds: Array[K] = {
if (partitions <= 1) {
// 如果給定的分區(qū)數(shù)小于等于1的情況下,直接返回一個(gè)空的集合,表示數(shù)據(jù)不進(jìn)行分區(qū)
Array.empty
} else {
// This is the sample size we need to have roughly balanced output partitions, capped at 1M.
// 給定總的數(shù)據(jù)抽樣大小,最多1M的數(shù)據(jù)量(10^6),最少20倍的RDD分區(qū)數(shù)量,也就是每個(gè)RDD分區(qū)至少抽取20條數(shù)據(jù)
val sampleSize = math.min(20.0 * partitions, 1e6)
// Assume the input partitions are roughly balanced and over-sample a little bit.
// RDD各分區(qū)中的數(shù)據(jù)量可能會(huì)出現(xiàn)傾斜的情況,乘于3的目的就是保證數(shù)據(jù)量小的分區(qū)能夠采樣到足夠的數(shù)據(jù),而對(duì)于數(shù)據(jù)量大的分區(qū)會(huì)進(jìn)行第二次采樣
val sampleSizePerPartition = math.ceil(3.0 * sampleSize / rdd.partitions.size).toInt
// 從rdd中抽取數(shù)據(jù),返回值:(總rdd數(shù)據(jù)量, Array[分區(qū)id,當(dāng)前分區(qū)的數(shù)據(jù)量,當(dāng)前分區(qū)抽取的數(shù)據(jù)])
val (numItems, sketched) = RangePartitioner.sketch(rdd.map(_._1), sampleSizePerPartition)
if (numItems == 0L) {
// 如果總的數(shù)據(jù)量為0(RDD為空),那么直接返回一個(gè)空的數(shù)組
Array.empty
} else {
// If a partition contains much more than the average number of items, we re-sample from it
// to ensure that enough items are collected from that partition.
// 計(jì)算總樣本數(shù)量和總記錄數(shù)的占比,占比最大為1.0
val fraction = math.min(sampleSize / math.max(numItems, 1L), 1.0)
// 保存樣本數(shù)據(jù)的集合buffer
val candidates = ArrayBuffer.empty[(K, Float)]
// 保存數(shù)據(jù)分布不均衡的分區(qū)id(數(shù)據(jù)量超過(guò)fraction比率的分區(qū))
val imbalancedPartitions = mutable.Set.empty[Int]
// 計(jì)算抽取出來(lái)的樣本數(shù)據(jù)
sketched.foreach { case (idx, n, sample) =>
if (fraction * n > sampleSizePerPartition) {
// 如果fraction乘以當(dāng)前分區(qū)中的數(shù)據(jù)量大于之前計(jì)算的每個(gè)分區(qū)的抽象數(shù)據(jù)大小,那么表示當(dāng)前分區(qū)抽取的數(shù)據(jù)太少了,該分區(qū)數(shù)據(jù)分布不均衡,需要重新抽取
imbalancedPartitions += idx
} else {
// 當(dāng)前分區(qū)不屬于數(shù)據(jù)分布不均衡的分區(qū),計(jì)算占比權(quán)重,并添加到candidates集合中
// The weight is 1 over the sampling probability.
val weight = (n.toDouble / sample.size).toFloat
for (key <- sample) {
candidates += ((key, weight))
}
}
}
// 對(duì)于數(shù)據(jù)分布不均衡的RDD分區(qū),重新進(jìn)行數(shù)據(jù)抽樣
if (imbalancedPartitions.nonEmpty) {
// Re-sample imbalanced partitions with the desired sampling probability.
// 獲取數(shù)據(jù)分布不均衡的RDD分區(qū),并構(gòu)成RDD
val imbalanced = new PartitionPruningRDD(rdd.map(_._1), imbalancedPartitions.contains)
// 隨機(jī)種子
val seed = byteswap32(-rdd.id - 1)
// 利用rdd的sample抽樣函數(shù)API進(jìn)行數(shù)據(jù)抽樣
val reSampled = imbalanced.sample(withReplacement = false, fraction, seed).collect()
val weight = (1.0 / fraction).toFloat
candidates ++= reSampled.map(x => (x, weight))
}
// 將最終的抽樣數(shù)據(jù)計(jì)算出rangeBounds出來(lái)
RangePartitioner.determineBounds(candidates, partitions)
}
}
}
// 下一個(gè)RDD的分區(qū)數(shù)量是rangeBounds數(shù)組中元素?cái)?shù)量+ 1個(gè)
def numPartitions: Int = rangeBounds.length + 1
// 二分查找器,內(nèi)部使用java中的Arrays類(lèi)提供的二分查找方法
private var binarySearch: ((Array[K], K) => Int) = CollectionsUtils.makeBinarySearch[K]
// 根據(jù)RDD的key值返回對(duì)應(yīng)的分區(qū)id。從0開(kāi)始
def getPartition(key: Any): Int = {
// 強(qiáng)制轉(zhuǎn)換key類(lèi)型為RDD中原本的數(shù)據(jù)類(lèi)型
val k = key.asInstanceOf[K]
var partition = 0
if (rangeBounds.length <= 128) {
// If we have less than 128 partitions naive search
// 如果分區(qū)數(shù)據(jù)小于等于128個(gè),那么直接本地循環(huán)尋找當(dāng)前k所屬的分區(qū)下標(biāo)
while (partition < rangeBounds.length && ordering.gt(k, rangeBounds(partition))) {
partition += 1
}
} else {
// Determine which binary search method to use only once.
// 如果分區(qū)數(shù)量大于128個(gè),那么使用二分查找方法尋找對(duì)應(yīng)k所屬的下標(biāo);
// 但是如果k在rangeBounds中沒(méi)有出現(xiàn),實(shí)質(zhì)上返回的是一個(gè)負(fù)數(shù)(范圍)或者是一個(gè)超過(guò)rangeBounds大小的數(shù)(最后一個(gè)分區(qū),比所有數(shù)據(jù)都大)
partition = binarySearch(rangeBounds, k)
// binarySearch either returns the match location or -[insertion point]-1
if (partition < 0) {
partition = -partition - 1
}
if (partition > rangeBounds.length) {
partition = rangeBounds.length
}
}
// 根據(jù)數(shù)據(jù)排序是升序還是降序進(jìn)行數(shù)據(jù)的排列,默認(rèn)為升序
if (ascending) {
partition
} else {
rangeBounds.length - partition
}
}
??影響分區(qū)的算子操作有:cogroup()、groupWith()、join()、leftOuterJoin()、rightOuterJoin()、groupByKey()、reduceByKey()、combineByKey()、partitionBy()、repartition()、coalesce()、sort()、mapValues()(如果父RDD有分區(qū)方式)、flatMapValues()(如果父RDD有分區(qū)方式)。
??對(duì)于執(zhí)行兩個(gè)RDD的算子操作,輸出數(shù)據(jù)的分區(qū)方式取決于父RDD的分區(qū)方式。默認(rèn)情況下,結(jié)果會(huì)采用哈希分區(qū),分區(qū)的數(shù)量和操作的并行度一樣。不過(guò),如果其中一個(gè)父RDD設(shè)置過(guò)分區(qū)方式,結(jié)果就采用那種分區(qū)方式;如果兩個(gè)父RDD都設(shè)置過(guò)分區(qū)方式,結(jié)果RDD采用第一個(gè)父RDD的分區(qū)方式。
??repartition 和 partitionBy 都是對(duì)數(shù)據(jù)進(jìn)行重新分區(qū),默認(rèn)都是使用 HashPartitioner。但是二者之間的區(qū)別有:
??其實(shí)partitionBy的結(jié)果才是我們所預(yù)期的。repartition 其實(shí)使用了一個(gè)隨機(jī)生成的數(shù)來(lái)當(dāng)作 key,而不是使用原來(lái)的key。
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
coalesce(numPartitions, shuffle = true)
}
def coalesce(numPartitions: Int, shuffle: Boolean = false)(implicit ord: Ordering[T] = null)
: RDD[T] = withScope {
if (shuffle) {
/** Distributes elements evenly across output partitions, starting from a random partition. */
val distributePartition = (index: Int, items: Iterator[T]) => {
var position = (new Random(index)).nextInt(numPartitions)
items.map { t =>
// Note that the hash code of the key will just be the key itself. The HashPartitioner
// will mod it with the number of total partitions.
position = position + 1
(position, t)
}
} : Iterator[(Int, T)]
// include a shuffle step so that our upstream tasks are still distributed
new CoalescedRDD(
new ShuffledRDD[Int, T, T](mapPartitionsWithIndex(distributePartition),
new HashPartitioner(numPartitions)),
numPartitions).values
} else {
new CoalescedRDD(this, numPartitions)
}
}
??兩個(gè)算子都是對(duì)RDD的分區(qū)進(jìn)行重新劃分,repartition只是coalesce接口中shuffle為true的簡(jiǎn)易實(shí)現(xiàn),(假設(shè)RDD有N個(gè)分區(qū),需要重新劃分成M個(gè)分區(qū))
??統(tǒng)計(jì)用戶訪問(wèn)其未訂閱主題頁(yè)面的情況。
val sc = new SparkContext()
val userData = sc.sequenceFile[UserID,LinkInfo]("hdfs://...").persist
def processNewLogs(logFileName:String){
val events = sc.sequenceFile[UserID, LinkInfo](logFileName)
//RDD of (UserID,(UserInfo,LinkInfo)) pairs
val joined = usersData.join(events)
val offTopicVisits = joined.filter {
// Expand the tuple into its components
case (userId, (userInfo, linkInfo)) =>
!userInfo.topics.contains(linkInfo.topic)
}.count()
println("Number of visits to non-subscribed opics: " + offTopicVisits)
}
??連接操作會(huì)將兩個(gè)數(shù)據(jù)集中的所有鍵的哈希值都求出來(lái),將哈希值相同的記錄通過(guò)網(wǎng)絡(luò)傳到同一臺(tái)機(jī)器上,然后再對(duì)所有鍵相同的記錄進(jìn)行連接操作。userData表數(shù)據(jù)量很大,所以這樣進(jìn)行哈希計(jì)算和跨節(jié)點(diǎn)數(shù)據(jù)混洗非常耗時(shí)。
val userData = sc.sequenceFile[UserID,LinkInfo]("hdfs://...")
.partionBy(new HashPartiotioner(100))
.persist()
??userData表進(jìn)行了重新分區(qū),將鍵相同的數(shù)據(jù)都放在一個(gè)分區(qū)中。然后調(diào)用persist持久化結(jié)果數(shù)據(jù),不用每次都計(jì)算哈希和跨節(jié)點(diǎn)混洗。程序運(yùn)行速度顯著提升。
忠于技術(shù),熱愛(ài)分享。歡迎關(guān)注公眾號(hào):java大數(shù)據(jù)編程,了解更多技術(shù)內(nèi)容。