真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

golang中如何實現(xiàn)并發(fā)安全Map以及分段鎖

小編給大家分享一下golang中如何實現(xiàn)并發(fā)安全Map以及分段鎖,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!

專注于為中小企業(yè)提供成都網(wǎng)站制作、做網(wǎng)站、外貿(mào)營銷網(wǎng)站建設(shè)服務(wù),電腦端+手機端+微信端的三站合一,更高效的管理,為中小企業(yè)梓潼免費做網(wǎng)站提供優(yōu)質(zhì)的服務(wù)。我們立足成都,凝聚了一批互聯(lián)網(wǎng)行業(yè)人才,有力地推動了1000+企業(yè)的穩(wěn)健成長,幫助中小企業(yè)通過網(wǎng)站建設(shè)實現(xiàn)規(guī)模擴充和轉(zhuǎn)變。

分斷鎖

type SimpleCache struct {
  mu  sync.RWMutex
  items map[interface{}]*simpleItem
}

在日常開發(fā)中, 上述這種數(shù)據(jù)結(jié)構(gòu)肯定不少見,因為golang的原生map是非并發(fā)安全的,所以為了保證map的并發(fā)安全,最簡單的方式就是給map加鎖。

之前使用過兩個本地內(nèi)存緩存的開源庫, gcache, cache2go,其中存儲緩存對象的結(jié)構(gòu)都是這樣,對于輕量級的緩存庫,為了設(shè)計簡潔(包含清理過期對象等 ) 再加上當需要緩存大量數(shù)據(jù)時有redis,memcache等明星項目解決。 但是如果拋開這些因素遇到真正數(shù)量巨大的數(shù)據(jù)量時,直接對一個map加鎖,當map中的值越來越多,訪問map的請求越來越多,大家都競爭這一把鎖顯得并發(fā)訪問控制變重。 在go1.9引入sync.Map 之前,比較流行的做法就是使用分段鎖,顧名思義就是將鎖分段,將鎖的粒度變小,將存儲的對象分散到各個分片中,每個分片由一把鎖控制,這樣使得當需要對在A分片上的數(shù)據(jù)進行讀寫時不會影響B(tài)分片的讀寫。

golang中如何實現(xiàn)并發(fā)安全Map以及分段鎖

分段鎖的實現(xiàn)

// Map 分片
type ConcurrentMap []*ConcurrentMapShared

// 每一個Map 是一個加鎖的并發(fā)安全Map
type ConcurrentMapShared struct {
  items map[string]interface{}
  sync.RWMutex  // 各個分片Map各自的鎖
}

主流的分段鎖,即通過hash取模的方式找到當前訪問的key處于哪一個分片之上,再對該分片進行加鎖之后再讀寫。分片定位時,常用有BKDR, FNV32等hash算法得到key的hash值。

func New() ConcurrentMap {
  // SHARD_COUNT 默認32個分片
  m := make(ConcurrentMap, SHARD_COUNT)
  for i := 0; i < SHARD_COUNT; i++ {
    m[i] = &ConcurrentMapShared{
      items: make(map[string]interface{}),
    }
  }
  return m
}

在初始化好分片后, 對分片上的數(shù)據(jù)進行讀寫時就需要用hash取模進行分段定位來確認即將要讀寫的分片。

獲取段定位

func (m ConcurrentMap) GetShard(key string) *ConcurrentMapShared {
  return m[uint(fnv32(key))%uint(SHARD_COUNT)]
}

// FNV hash
func fnv32(key string) uint32 {
  hash := uint32(2166136261)
  const prime32 = uint32(16777619)
  for i := 0; i < len(key); i++ {
    hash *= prime32
    hash ^= uint32(key[i])
  }
  return hash
}

之后對于map的GET SET 就簡單順利成章的完成

Set And Get

func (m ConcurrentMap) Set(key string, value interface{}) {
  shard := m.GetShard(key) // 段定位找到分片
  shard.Lock()       // 分片上鎖
  shard.items[key] = value // 分片操作 
  shard.Unlock()       // 分片解鎖
}

func (m ConcurrentMap) Get(key string) (interface{}, bool) {
  shard := m.GetShard(key)
  shard.RLock()
  val, ok := shard.items[key]
  shard.RUnlock()
  return val, ok
}

由此一個分段鎖Map就實現(xiàn)了, 但是比起普通的Map, 常用到的方法比如獲取所有key, 獲取所有Val 操作是要比原生Map復(fù)雜的,因為要遍歷每一個分片的每一個數(shù)據(jù), 好在golang的并發(fā)特性使得解決這類問題變得非常簡單

Keys

// 統(tǒng)計當前分段map中item的個數(shù)
func (m ConcurrentMap) Count() int {
  count := 0
  for i := 0; i < SHARD_COUNT; i++ {
    shard := m[i]
    shard.RLock()
    count += len(shard.items)
    shard.RUnlock()
  }
  return count
}

// 獲取所有的key
func (m ConcurrentMap) Keys() []string {
  count := m.Count()
  ch := make(chan string, count)

  // 每一個分片啟動一個協(xié)程 遍歷key
  go func() {
    wg := sync.WaitGroup{}
    wg.Add(SHARD_COUNT)
    for _, shard := range m {

      go func(shard *ConcurrentMapShared) {
        defer wg.Done()
        
        shard.RLock()

        // 每個分片中的key遍歷后都寫入統(tǒng)計用的channel
        for key := range shard.items {
          ch <- key
        }

        shard.RUnlock()
      }(shard)
    }
    wg.Wait()
    close(ch)
  }()

  keys := make([]string, count)
  // 統(tǒng)計各個協(xié)程并發(fā)讀取Map分片的key
  for k := range ch {
    keys = append(keys, k)
  }
  return keys
}

這里寫了一個benchMark來對該分段鎖Map和原生的Map加鎖方式進行壓測, 場景為將一萬個不重復(fù)的鍵值對同時以100萬次寫和100萬次讀,分別進行5次壓測, 如下壓測代碼

func BenchmarkMapShared(b *testing.B) {
  num := 10000
  testCase := genNoRepetTestCase(num) // 10000個不重復(fù)的鍵值對
  m := New()
  for _, v := range testCase {
    m.Set(v.Key, v.Val)
  }
  b.ResetTimer()

  for i := 0; i < 5; i++ {
    b.Run(strconv.Itoa(i), func(b *testing.B) {

      b.N = 1000000

      wg := sync.WaitGroup{}
      wg.Add(b.N * 2)
      for i := 0; i < b.N; i++ {
        e := testCase[rand.Intn(num)]

        go func(key string, val interface{}) {
          m.Set(key, val)
          wg.Done()
        }(e.Key, e.Val)

        go func(key string) {
          _, _ = m.Get(key)
          wg.Done()
        }(e.Key)

      }
      wg.Wait()
    })
  }
}

原生Map加鎖壓測結(jié)果

golang中如何實現(xiàn)并發(fā)安全Map以及分段鎖

分段鎖壓測結(jié)果

golang中如何實現(xiàn)并發(fā)安全Map以及分段鎖

可以看出在將鎖的粒度細化后再面對大量需要控制并發(fā)安全的訪問時,分段鎖Map的耗時比原生Map加鎖要快3倍有余

Sync.Map

go1.9之后加入了支持并發(fā)安全的Map sync.Map, sync.Map 通過一份只使用原子操作的數(shù)據(jù)和一份冗余了只讀數(shù)據(jù)的加鎖數(shù)據(jù)實現(xiàn)一定程度上的讀寫分離,使得大多數(shù)讀操作和更新操作是原子操作,寫入新數(shù)據(jù)才加鎖的方式來提升性能。以下是 sync.Map源碼剖析, 結(jié)構(gòu)體中的注釋都會在具體實現(xiàn)代碼中提示相呼應(yīng)

type Map struct {
  // 保護dirty的鎖
  mu Mutex            
  // 只讀數(shù)據(jù)(修改采用原子操作)
  read atomic.Value        
  // 包含只讀中所有數(shù)據(jù)(冗余),寫入新數(shù)據(jù)時也在dirty中操作
  dirty map[interface{}]*entry 
  // 當原子操作訪問只讀read時找不到數(shù)據(jù)時會去dirty中尋找,此時misses+1,dirty及作為存儲新寫入的數(shù)據(jù),又冗余了只讀結(jié)構(gòu)中的數(shù)據(jù),所以當misses > dirty 的長度時, 會將dirty升級為read,同時將老的dirty置nil
  misses int 
}

// Map struct 中的 read 就是readOnly 的指針
type readOnly struct {
  // 基礎(chǔ)Map
  m  map[interface{}]*entry 
  // 用于表示當前dirty中是否有read中不存在的數(shù)據(jù), 在寫入數(shù)據(jù)時, 如果發(fā)現(xiàn)dirty中沒有新數(shù)據(jù)且dirty為nil時,會將read中未被刪除的數(shù)據(jù)拷貝一份冗余到dirty中, 過程與Map struct中的 misses相呼應(yīng)
  amended bool 
}

// 數(shù)據(jù)項
type entry struct {
  p unsafe.Pointer 
}

// 用于標記數(shù)據(jù)項已被刪除(主要保證數(shù)據(jù)冗余時的并發(fā)安全)
// 上述Map結(jié)構(gòu)中說到有一個將read數(shù)據(jù)拷貝冗余至dirty的過程, 因為刪除數(shù)據(jù)項是將*entry置nil, 為了避免冗余過程中因并發(fā)問題導(dǎo)致*entry改變而影響到拷貝后的dirty正確性,所以sync.Map使用expunged來標記entry是否被刪除
var expunged = unsafe.Pointer(new(interface{}))

在下面sync.Map具體實現(xiàn)中將會看到很多“雙檢查”代碼,因為通過原子操作獲取的值可能在進行其他非原子操作過程中已改變,所以再非原子操作后需要使用之前原子操作獲取的值需要再次進行原子操作獲取。

compareAndSwap 交換并比較, 用于在多線程編程中實現(xiàn)不被打斷的數(shù)據(jù)交換操作,從而避免多線程同時改寫某一數(shù)據(jù)時導(dǎo)致數(shù)據(jù)不一致問題。

sync.Map Write

func (m *Map) Store(key, value interface{}) {
  // 先不上鎖,而是從只讀數(shù)據(jù)中按key讀取, 如果已存在以compareAndSwap操作進行覆蓋(update)
  read, _ := m.read.Load().(readOnly)
  if e, ok := read.m[key]; ok && e.tryStore(&value) {
    return
  }
  
  m.mu.Lock()
  // 雙檢查獲取read
  read, _ = m.read.Load().(readOnly)
  // 如果data在read中,更新entry
  if e, ok := read.m[key]; ok {
    // 如果原子操作讀到的數(shù)據(jù)是被標記刪除的, 則視為新數(shù)據(jù)寫入dirty
    if e.unexpungeLocked() {
      m.dirty[key] = e
    }
    // 原子操作寫新數(shù)據(jù)
    e.storeLocked(&value)
  } else if e, ok := m.dirty[key]; ok {
    // 原子操作寫新數(shù)據(jù)
    e.storeLocked(&value)
  } else {
    // 新數(shù)據(jù) 
    // 當dirty中沒有新數(shù)據(jù)時,將read中數(shù)據(jù)冗余到dirty
    if !read.amended {
      m.dirtyLocked()
      m.read.Store(readOnly{m: read.m, amended: true})
    }
    
    m.dirty[key] = newEntry(value)
  }
  m.mu.Unlock()
}

func (e *entry) tryStore(i *interface{}) bool {
  p := atomic.LoadPointer(&e.p)
  if p == expunged {
    return false
  }
  for {
    if atomic.CompareAndSwapPointer(&e.p, p, unsafe.Pointer(i)) {
      return true
    }
    p = atomic.LoadPointer(&e.p)
    if p == expunged {
      return false
    }
  }
}


// 在dirty中沒有比read多出的新數(shù)據(jù)時觸發(fā)冗余
func (m *Map) dirtyLocked() {
  if m.dirty != nil {
    return
  }

  read, _ := m.read.Load().(readOnly)
  m.dirty = make(map[interface{}]*entry, len(read.m))
  for k, e := range read.m {
    // 檢查entry是否被刪除, 被刪除的數(shù)據(jù)不冗余
    if !e.tryExpungeLocked() {
      m.dirty[k] = e
    }
  }
}

func (e *entry) tryExpungeLocked() (isExpunged bool) {
  p := atomic.LoadPointer(&e.p)
  for p == nil {
    // 將被刪除(置nil)的數(shù)據(jù)以cas原子操作標記為expunged(防止因并發(fā)情況下其他操作導(dǎo)致冗余進dirty的數(shù)據(jù)不正確)
    if atomic.CompareAndSwapPointer(&e.p, nil, expunged) {
      return true
    }
    p = atomic.LoadPointer(&e.p)
  }
  return p == expunged
}

sync.Map Read

func (m *Map) Load(key interface{}) (value interface{}, ok bool) {
  read, _ := m.read.Load().(readOnly)
  e, ok := read.m[key]

  // 只讀數(shù)據(jù)中沒有,并且dirty有比read多的數(shù)據(jù),加鎖在dirty中找
  if !ok && read.amended {
    m.mu.Lock()
    // 雙檢查, 因為上鎖之前的語句是非原子性的
    read, _ = m.read.Load().(readOnly)
    e, ok = read.m[key]
    if !ok && read.amended {
      // 只讀中沒有讀取到的次數(shù)+1
      e, ok = m.dirty[key]
      // 檢查是否達到觸發(fā)dirty升級read的條件
      m.missLocked()
    }
    m.mu.Unlock()
  }
  if !ok {
    return nil, false
  }
  // atomic.Load 但被標記為刪除的會返回nil
  return e.load()
}

func (m *Map) missLocked() {
  m.misses++
  if m.misses < len(m.dirty) {
    return
  }
  m.read.Store(readOnly{m: m.dirty})
  m.dirty = nil
  m.misses = 0
}

sync.Map DELETE

func (m *Map) Delete(key interface{}) {
  read, _ := m.read.Load().(readOnly)
  e, ok := read.m[key]
  // 只讀中不存在需要到dirty中去刪除
  if !ok && read.amended {
    m.mu.Lock() 
    // 雙檢查, 因為上鎖之前的語句是非原子性的
    read, _ = m.read.Load().(readOnly)
    e, ok = read.m[key]
    if !ok && read.amended {
      delete(m.dirty, key)
    }
    m.mu.Unlock()
  }
  if ok {
    e.delete()
  }
}

func (e *entry) delete() (hadValue bool) {
  for {
    p := atomic.LoadPointer(&e.p)
    if p == nil || p == expunged {
      return false
    }
    if atomic.CompareAndSwapPointer(&e.p, p, nil) {
      return true
    }
  }
}

同樣以剛剛壓測原生加鎖Map和分段鎖的方式來壓測sync.Map

golang中如何實現(xiàn)并發(fā)安全Map以及分段鎖

壓測平均下來sync.Map和分段鎖差別不大,但是比起分段鎖, sync.Map則將鎖的粒度更加的細小到對數(shù)據(jù)的狀態(tài)上,使得大多數(shù)據(jù)可以無鎖化操作, 同時比分段鎖擁有更好的拓展性,因為分段鎖使用前總是要定一個分片數(shù)量, 在做擴容或者縮小時很麻煩, 但要達到sync.Map這種性能既好又能動態(tài)擴容的程度,代碼就相對復(fù)雜很多。

還有注意在使用sync.Map時切忌不要將其拷貝, go源碼中有對sync.Map注釋到” A Map must not be copied after first use.”因為當sync.Map被拷貝之后, Map類型的dirty還是那個map 但是read 和 鎖卻不是之前的read和鎖(都不在一個世界你拿什么保護我), 所以必然導(dǎo)致并發(fā)不安全(為了寫博我把sync.Map代碼復(fù)制出來一份把私有成員改成可外部訪問的打印指針)

golang中如何實現(xiàn)并發(fā)安全Map以及分段鎖

golang中如何實現(xiàn)并發(fā)安全Map以及分段鎖

以上是“golang中如何實現(xiàn)并發(fā)安全Map以及分段鎖”這篇文章的所有內(nèi)容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內(nèi)容對大家有所幫助,如果還想學習更多知識,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道!


網(wǎng)頁標題:golang中如何實現(xiàn)并發(fā)安全Map以及分段鎖
文章源于:http://weahome.cn/article/ipessd.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部