真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

Uberjvmprofiler如何使用

這篇文章將為大家詳細(xì)講解有關(guān)Uber jvm profiler如何使用,小編覺(jué)得挺實(shí)用的,因此分享給大家做個(gè)參考,希望大家閱讀完這篇文章后可以有所收獲。

專(zhuān)注于為中小企業(yè)提供網(wǎng)站設(shè)計(jì)制作、網(wǎng)站建設(shè)服務(wù),電腦端+手機(jī)端+微信端的三站合一,更高效的管理,為中小企業(yè)霍邱免費(fèi)做網(wǎng)站提供優(yōu)質(zhì)的服務(wù)。我們立足成都,凝聚了一批互聯(lián)網(wǎng)行業(yè)人才,有力地推動(dòng)了上千多家企業(yè)的穩(wěn)健成長(zhǎng),幫助中小企業(yè)通過(guò)網(wǎng)站建設(shè)實(shí)現(xiàn)規(guī)模擴(kuò)充和轉(zhuǎn)變。

背景

uber jvm profiler是用于在分布式監(jiān)控收集jvm 相關(guān)指標(biāo),如:cpu/memory/io/gc信息等

安裝

確保安裝了maven和JDK>=8前提下,直接mvn clean package

java application

  • 說(shuō)明

    直接以java agent的部署就可以使用

  • 使用

    java -javaagent:jvm-profiler-1.0.0.jar=reporter=com.uber.profiling.reporters.KafkaOutputReporter,brokerList='kafka1:9092',topicPrefix=demo_,tag=tag-demo,metricInterval=5000,sampleInterval=0 -cp target/jvm-profiler-1.0.0.jar

  • 選項(xiàng)解釋

參數(shù)說(shuō)明
reporterreporter類(lèi)別, 此處直接默認(rèn)為com.uber.profiling.reporters.KafkaOutputReporter就可以
brokerList如reporter為com.uber.profiling.reporters.KafkaOutputReporter,則brokerList為kafka列表,以逗號(hào)分隔
topicPrefix如reporter為com.uber.profiling.reporters.KafkaOutputReporter,則topicPrefix為kafka topic的前綴
tagkey為tag的metric,會(huì)輸出到reporter中
metricIntervalmetric report的頻率,根據(jù)實(shí)際情況設(shè)置,單位為ms
sampleIntervaljvm堆棧metrics report的頻率,根據(jù)實(shí)際情況設(shè)置,單位為ms
  • 結(jié)果展示

  "nonHeapMemoryTotalUsed": 11890584.0,
  "bufferPools": [
      {
          "totalCapacity": 0,
          "name": "direct",
          "count": 0,
          "memoryUsed": 0
      },
      {
          "totalCapacity": 0,
          "name": "mapped",
          "count": 0,
          "memoryUsed": 0
      }
  ],
  "heapMemoryTotalUsed": 24330736.0,
  "epochMillis": 1515627003374,
  "nonHeapMemoryCommitted": 13565952.0,
  "heapMemoryCommitted": 257425408.0,
  "memoryPools": [
      {
          "peakUsageMax": 251658240,
          "usageMax": 251658240,
          "peakUsageUsed": 1194496,
          "name": "Code Cache",
          "peakUsageCommitted": 2555904,
          "usageUsed": 1173504,
          "type": "Non-heap memory",
          "usageCommitted": 2555904
      },
      {
          "peakUsageMax": -1,
          "usageMax": -1,
          "peakUsageUsed": 9622920,
          "name": "Metaspace",
          "peakUsageCommitted": 9830400,
          "usageUsed": 9622920,
          "type": "Non-heap memory",
          "usageCommitted": 9830400
      },
      {
          "peakUsageMax": 1073741824,
          "usageMax": 1073741824,
          "peakUsageUsed": 1094160,
          "name": "Compressed Class Space",
          "peakUsageCommitted": 1179648,
          "usageUsed": 1094160,
          "type": "Non-heap memory",
          "usageCommitted": 1179648
      },
      {
          "peakUsageMax": 1409286144,
          "usageMax": 1409286144,
          "peakUsageUsed": 24330736,
          "name": "PS Eden Space",
          "peakUsageCommitted": 67108864,
          "usageUsed": 24330736,
          "type": "Heap memory",
          "usageCommitted": 67108864
      },
      {
          "peakUsageMax": 11010048,
          "usageMax": 11010048,
          "peakUsageUsed": 0,
          "name": "PS Survivor Space",
          "peakUsageCommitted": 11010048,
          "usageUsed": 0,
          "type": "Heap memory",
          "usageCommitted": 11010048
      },
      {
          "peakUsageMax": 2863661056,
          "usageMax": 2863661056,
          "peakUsageUsed": 0,
          "name": "PS Old Gen",
          "peakUsageCommitted": 179306496,
          "usageUsed": 0,
          "type": "Heap memory",
          "usageCommitted": 179306496
      }
  ],
  "processCpuLoad": 0.0008024004394748531,
  "systemCpuLoad": 0.23138430784607697,
  "processCpuTime": 496918000,
  "appId": null,
  "name": "24103@machine01",
  "host": "machine01",
  "processUuid": "3c2ec835-749d-45ea-a7ec-e4b9fe17c23a",
  "tag": "mytag",
  "gc": [
      {
          "collectionTime": 0,
          "name": "PS Scavenge",
          "collectionCount": 0
      },
      {
          "collectionTime": 0,
          "name": "PS MarkSweep",
          "collectionCount": 0
      }
  ]
}

spark application

  • 說(shuō)明

    和java應(yīng)用不同,需要把jvm-profiler.jar分發(fā)到各個(gè)節(jié)點(diǎn)上

  • 使用

       --jars hdfs:///public/libs/jvm-profiler-1.0.0.jar   
       --conf spark.driver.extraJavaOptions=-javaagent:jvm-profiler-1.0.0.jar=reporter=com.uber.profiling.reporters.KafkaOutputReporter,brokerList='kafka1:9092',topicPrefix=demo_,tag=tag-demo,metricInterval=5000,sampleInterval=0 
       --conf spark.executor.extraJavaOptions=-javaagent:jvm-profiler-1.0.0.jar=reporter=com.uber.profiling.reporters.KafkaOutputReporter,brokerList='kafka1:9092',topicPrefix=demo_,tag=tag-demo,metricInterval=5000,sampleInterval=0

  • 選項(xiàng)解釋

參數(shù)說(shuō)明
reporterreporter類(lèi)別, 此處直接默認(rèn)為com.uber.profiling.reporters.KafkaOutputReporter就可以
brokerList如reporter為com.uber.profiling.reporters.KafkaOutputReporter,則brokerList為kafka列表,以逗號(hào)分隔
topicPrefix如reporter為com.uber.profiling.reporters.KafkaOutputReporter,則topicPrefix為kafka topic的前綴
tagkey為tag的metric,會(huì)輸出到reporter中
metricIntervalmetric report的頻率,根據(jù)實(shí)際情況設(shè)置,單位為ms
sampleIntervaljvm堆棧metrics report的頻率,根據(jù)實(shí)際情況設(shè)置,單位為ms
  • 結(jié)果展示

  "nonHeapMemoryTotalUsed": 11890584.0,
  "bufferPools": [
      {
          "totalCapacity": 0,
          "name": "direct",
          "count": 0,
          "memoryUsed": 0
      },
      {
          "totalCapacity": 0,
          "name": "mapped",
          "count": 0,
          "memoryUsed": 0
      }
  ],
  "heapMemoryTotalUsed": 24330736.0,
  "epochMillis": 1515627003374,
  "nonHeapMemoryCommitted": 13565952.0,
  "heapMemoryCommitted": 257425408.0,
  "memoryPools": [
      {
          "peakUsageMax": 251658240,
          "usageMax": 251658240,
          "peakUsageUsed": 1194496,
          "name": "Code Cache",
          "peakUsageCommitted": 2555904,
          "usageUsed": 1173504,
          "type": "Non-heap memory",
          "usageCommitted": 2555904
      },
      {
          "peakUsageMax": -1,
          "usageMax": -1,
          "peakUsageUsed": 9622920,
          "name": "Metaspace",
          "peakUsageCommitted": 9830400,
          "usageUsed": 9622920,
          "type": "Non-heap memory",
          "usageCommitted": 9830400
      },
      {
          "peakUsageMax": 1073741824,
          "usageMax": 1073741824,
          "peakUsageUsed": 1094160,
          "name": "Compressed Class Space",
          "peakUsageCommitted": 1179648,
          "usageUsed": 1094160,
          "type": "Non-heap memory",
          "usageCommitted": 1179648
      },
      {
          "peakUsageMax": 1409286144,
          "usageMax": 1409286144,
          "peakUsageUsed": 24330736,
          "name": "PS Eden Space",
          "peakUsageCommitted": 67108864,
          "usageUsed": 24330736,
          "type": "Heap memory",
          "usageCommitted": 67108864
      },
      {
          "peakUsageMax": 11010048,
          "usageMax": 11010048,
          "peakUsageUsed": 0,
          "name": "PS Survivor Space",
          "peakUsageCommitted": 11010048,
          "usageUsed": 0,
          "type": "Heap memory",
          "usageCommitted": 11010048
      },
      {
          "peakUsageMax": 2863661056,
          "usageMax": 2863661056,
          "peakUsageUsed": 0,
          "name": "PS Old Gen",
          "peakUsageCommitted": 179306496,
          "usageUsed": 0,
          "type": "Heap memory",
          "usageCommitted": 179306496
      }
  ],
  "processCpuLoad": 0.0008024004394748531,
  "systemCpuLoad": 0.23138430784607697,
  "processCpuTime": 496918000,
  "appId": null,
  "name": "24103@machine01",
  "host": "machine01",
  "processUuid": "3c2ec835-749d-45ea-a7ec-e4b9fe17c23a",
  "tag": "mytag",
  "gc": [
      {
          "collectionTime": 0,
          "name": "PS Scavenge",
          "collectionCount": 0
      },
      {
          "collectionTime": 0,
          "name": "PS MarkSweep",
          "collectionCount": 0
      }
  ]
}

分析

  • 已有的reporter

reporter說(shuō)明
ConsoleOutputReporter默認(rèn)的repoter,一般用于調(diào)試
FileOutputReporter基于文件的reporter,分布式環(huán)境下不適用,得設(shè)置outputDir
KafkaOutputReporter基于kafka的reporter,正式環(huán)境用的多,得設(shè)置brokerList,topicPrefix
GraphiteOutputReporter基于Graphite的reporter,需設(shè)置graphite.host等配置
redisOutputReporter基于redis的reporter,構(gòu)建命令 mvn -P redis clean package
InfluxDBOutputReporter基于InfluxDB的reporter,構(gòu)建命令mvn -P influxdb clean package,需設(shè)置influxdb.host等配置
建議在生產(chǎn)環(huán)境下使用KafkaOutputReporter,操作靈活性高,可以結(jié)合clickhouse grafana進(jìn)行指標(biāo)展示
  • 源碼分析

    該jvm-profiler整體是基于java agent實(shí)現(xiàn),項(xiàng)目pom文件 指定了MANIFEST.MF中的Premain-Class項(xiàng)和Agent-Class為com.uber.profiling.Agent 具體的實(shí)現(xiàn)類(lèi)為AgentImpl
    就具體的AgentImpl類(lèi)的run方法來(lái)進(jìn)行分析

    public void run(Arguments arguments, Instrumentation instrumentation, Collection objectsToCloseOnShutdown) {
          if (arguments.isNoop()) {
              logger.info("Agent noop is true, do not run anything");
              return;
          }
    
          Reporter reporter = arguments.getReporter();
    
          String processUuid = UUID.randomUUID().toString();
    
          String appId = null;
    
          String appIdVariable = arguments.getAppIdVariable();
          if (appIdVariable != null && !appIdVariable.isEmpty()) {
              appId = System.getenv(appIdVariable);
          }
    
          if (appId == null || appId.isEmpty()) {
              appId = SparkUtils.probeAppId(arguments.getAppIdRegex());
          }
    
          if (!arguments.getDurationProfiling().isEmpty()
                  || !arguments.getArgumentProfiling().isEmpty()) {
              instrumentation.addTransformer(new JavaAgentFileTransformer(arguments.getDurationProfiling(), arguments.getArgumentProfiling()));
          }
    
          List profilers = createProfilers(reporter, arguments, processUuid, appId);
    
          ProfilerGroup profilerGroup = startProfilers(profilers);
    
          Thread shutdownHook = new Thread(new ShutdownHookRunner(profilerGroup.getPeriodicProfilers(), Arrays.asList(reporter), objectsToCloseOnShutdown));
          Runtime.getRuntime().addShutdownHook(shutdownHook);
      }

     

    • arguments.getReporter() 獲取reporter,如果沒(méi)有設(shè)置則設(shè)置為reporterConstructor,否則設(shè)置為指定的reporter

    • String appId ,設(shè)置appId,首先從配置中查找,如果沒(méi)有設(shè)置,再?gòu)膃nv中查找,對(duì)于spark應(yīng)用則取spark.app.id的值

    • List profilers = createProfilers(reporter, arguments, processUuid, appId),創(chuàng)建profilers,默認(rèn)有CpuAndMemoryProfiler,ThreadInfoProfiler,ProcessInfoProfiler ;
      1.其中CpuAndMemoryProfiler,ThreadInfoProfiler,ProcessInfoProfiler是從JMX中讀取數(shù)據(jù),ProcessInfoProfiler還會(huì)從 /pro讀取數(shù)據(jù);
      2.如果設(shè)置了durationProfiling,argumentProfiling,sampleInterval,ioProfiling,則會(huì)增加對(duì)應(yīng)的MethodDurationProfiler(輸出方法調(diào)用花費(fèi)的時(shí)間),MethodArgumentProfiler(輸出方法參數(shù)的值),StacktraceReporterProfiler,IOProfiler;
      3.MethodArgumentProfiler和MethodDurationProfiler利用javassist第三方字節(jié)碼編譯工具來(lái)改寫(xiě)對(duì)應(yīng)的類(lèi),具體實(shí)現(xiàn)參照J(rèn)avaAgentFileTransformer
      4.StacktraceReporterProfiler從JMX中讀取數(shù)據(jù)
      5.IOProfiler則是讀取本地機(jī)器上的/pro文件對(duì)應(yīng)的目錄的數(shù)據(jù)

    • ProfilerGroup profilerGroup = startProfilers(profilers) 開(kāi)始進(jìn)行profiler的定時(shí)report
      其中還會(huì)區(qū)分oneTimeProfilers和periodicProfilers,ProcessInfoProfiler就屬于oneTimeProfilers,因?yàn)閜rocess的信息,在運(yùn)行期間是不會(huì)變的,不需要周期行的reporter
      至此,整個(gè)流程結(jié)束

關(guān)于“Uber jvm profiler如何使用”這篇文章就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,使各位可以學(xué)到更多知識(shí),如果覺(jué)得文章不錯(cuò),請(qǐng)把它分享出去讓更多的人看到。


本文標(biāo)題:Uberjvmprofiler如何使用
瀏覽地址:http://weahome.cn/article/ippgjd.html

其他資訊

在線咨詢(xún)

微信咨詢(xún)

電話咨詢(xún)

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部