真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

Python如何繪制股票移動均線-創(chuàng)新互聯(lián)

小編給大家分享一下Python如何繪制股票移動均線,希望大家閱讀完這篇文章之后都有所收獲,下面讓我們一起去探討吧!

在北京等地區(qū),都構(gòu)建了全面的區(qū)域性戰(zhàn)略布局,加強發(fā)展的系統(tǒng)性、市場前瞻性、產(chǎn)品創(chuàng)新能力,以專注、極致的服務(wù)理念,為客戶提供網(wǎng)站設(shè)計制作、網(wǎng)站制作 網(wǎng)站設(shè)計制作按需網(wǎng)站建設(shè),公司網(wǎng)站建設(shè),企業(yè)網(wǎng)站建設(shè),品牌網(wǎng)站設(shè)計,成都全網(wǎng)營銷,成都外貿(mào)網(wǎng)站建設(shè)公司,北京網(wǎng)站建設(shè)費用合理。

1. 前沿

移動均線是股票最進本的指標,本文采用numpy.convolve計算股票的移動均線

2. numpy.convolve

numpy.convolve(a, v, mode='full')

Returns the discrete, linear convolution of two one-dimensional sequences.

The convolution operator is often seen in signal processing, where it models the effect of a linear time-invariant system on a signal [R17]. In probability theory, the sum of two independent random variables is distributed according to the convolution of their individual distributions.

If v is longer than a, the arrays are swapped before computation.

Parameters:

a : (N,) array_like

 First one-dimensional input array.

 v : (M,) array_like

 Second one-dimensional input array.

 mode : {‘full', ‘valid', ‘same'}, optional

 ‘full':

  By default, mode is ‘full'. This returns the convolution at each point of overlap, with an output shape of (N+M-1,). At the end-points of the convolution, the signals do not overlap completely, and boundary effects may be seen.
 ‘same':

  Mode same returns output of length max(M, N). Boundary effects are still visible.
 ‘valid':

  Mode valid returns output of length max(M, N) - min(M, N) + 1. The convolution product is only given for points where the signals overlap completely. Values outside the signal boundary have no effect.

Returns:

out : ndarray

 Discrete, linear convolution of a and v.

計算公式:

Python如何繪制股票移動均線

eg:

>>> import numpy as np
>>> 
>>> np_list = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> 
>>> np_list
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> x = np.convolve(np_list, 2)
>>> x
array([ 2, 4, 6, 8, 10, 12, 14, 16, 18])
>>> x = np.convolve(np_list, [0.5, 0.5])
>>> x
array([ 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 4.5])

3. 移動均線計算

def moving_average(x, n, type='simple'):
 x = np.asarray(x)
 if type == 'simple':
  weights = np.ones(n)
 else:
  weights = np.exp(np.linspace(-1., 0., n))

 weights /= weights.sum()

 a = np.convolve(x, weights, mode='full')[:len(x)]
 a[:n] = a[n]
 return a
 ma10 = moving_average(close_data, 10, 'simple')
 ma20 = moving_average(close_data, 20, 'simple')

 ax1.plot(data['date'], ma10, color='c', lw=2, label='MA (10)')
 ax1.plot(data['date'], ma20, color='red', lw=2, label='MA (20)')

4. 效果圖

Python如何繪制股票移動均線

python是什么意思

Python是一種跨平臺的、具有解釋性、編譯性、互動性和面向?qū)ο蟮哪_本語言,其最初的設(shè)計是用于編寫自動化腳本,隨著版本的不斷更新和新功能的添加,常用于用于開發(fā)獨立的項目和大型項目。

看完了這篇文章,相信你對“Python如何繪制股票移動均線”有了一定的了解,如果想了解更多相關(guān)知識,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,感謝各位的閱讀!


分享文章:Python如何繪制股票移動均線-創(chuàng)新互聯(lián)
本文鏈接:http://weahome.cn/article/jchoh.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部