這期內容當中小編將會給大家?guī)碛嘘P如何進行spark join的源碼分析,文章內容豐富且以專業(yè)的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。
主要從事網頁設計、PC網站建設(電腦版網站建設)、wap網站建設(手機版網站建設)、成都響應式網站建設公司、程序開發(fā)、微網站、成都小程序開發(fā)等,憑借多年來在互聯(lián)網的打拼,我們在互聯(lián)網網站建設行業(yè)積累了豐富的網站設計制作、成都網站制作、網絡營銷經驗,集策劃、開發(fā)、設計、營銷、管理等多方位專業(yè)化運作于一體,具備承接不同規(guī)模與類型的建設項目的能力。
import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} object JoinDemo { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName(this.getClass.getCanonicalName.init).setMaster("local[*]") val sc = new SparkContext(conf) sc.setLogLevel("WARN") val random = scala.util.Random val col1 = Range(1, 50).map(idx => (random.nextInt(10), s"user$idx")) val col2 = Array((0, "BJ"), (1, "SH"), (2, "GZ"), (3, "SZ"), (4, "TJ"), (5, "CQ"), (6, "HZ"), (7, "NJ"), (8, "WH"), (0, "CD")) val rdd1: RDD[(Int, String)] = sc.makeRDD(col1) val rdd2: RDD[(Int, String)] = sc.makeRDD(col2) val rdd3: RDD[(Int, (String, String))] = rdd1.join(rdd2) println (rdd3.dependencies) val rdd4: RDD[(Int, (String, String))] = rdd1.partitionBy(new HashPartitioner(3)).join(rdd2.partitionBy(newHashPartitioner(3))) println(rdd4.dependencies) sc.stop() } }
1.兩個打印語句: List(org.apache.spark.OneToOneDependency@63acf8f6) List(org.apache.spark.OneToOneDependency@d9a498) 對應的依賴: rdd3對應的是寬依賴,rdd4對應的是窄依賴 原因: 1)參考webUI 由DAG圖可以看出,第一個join和之前的清晰劃分成單獨的Satge??梢钥闯鲞@個是寬依賴。第二個join,partitionBy之后再進行join并沒有單獨劃分成一個stage,由此可見是一個窄依賴。
rdd3的join
rdd4的join
2)代碼解析: a.首先是默認的join方法,這里使用了一個默認分區(qū)器
/** * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each * pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and * (k, v2) is in `other`. Performs a hash join across the cluster. */ def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))] = self.withScope { join(other, defaultPartitioner(self, other)) }
b.默認分區(qū)器,對于第一個join會返回一個以電腦core總數為分區(qū)數量的HashPartitioner.第二個join會返回我們設定的HashPartitioner(分區(qū)數目3)
def defaultPartitioner(rdd: RDD[_], others: RDD[_]*): Partitioner = { val rdds = (Seq(rdd) ++ others) val hasPartitioner = rdds.filter(_.partitioner.exists(_.numPartitions > 0)) val hasMaxPartitioner: Option[RDD[_]] = if (hasPartitioner.nonEmpty) { Some(hasPartitioner.maxBy(_.partitions.length)) } else { None } val defaultNumPartitions = if (rdd.context.conf.contains("spark.default.parallelism")) { rdd.context.defaultParallelism } else { rdds.map(_.partitions.length).max } // If the existing max partitioner is an eligible one, or its partitions number is larger // than the default number of partitions, use the existing partitioner. if (hasMaxPartitioner.nonEmpty && (isEligiblePartitioner(hasMaxPartitioner.get, rdds) || defaultNumPartitions < hasMaxPartitioner.get.getNumPartitions)) { hasMaxPartitioner.get.partitioner.get } else { new HashPartitioner(defaultNumPartitions) } }
c.走到了實際執(zhí)行的join方法,里面flatMapValues是一個窄依賴,所以說如果有寬依賴應該在cogroup算子中
/** * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each * pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and * (k, v2) is in `other`. Uses the given Partitioner to partition the output RDD. */ def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))] = self.withScope { this.cogroup(other, partitioner).flatMapValues( pair => for (v <- pair._1.iterator; w <- pair._2.iterator) yield (v, w) ) }
d.進入cogroup方法中,核心是CoGroupedRDD,根據兩個需要join的rdd和一個分區(qū)器。由于第一個join的時候,兩個rdd都沒有分區(qū)器,所以在這一步,兩個rdd需要先根據傳入的分區(qū)器進行一次shuffle,因此第一個join是寬依賴。第二個join此時已經分好區(qū)了,不需要再再進行shuffle了。所以第二個是窄依賴
/** * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the * list of values for that key in `this` as well as `other`. */ def cogroup[W](other: RDD[(K, W)], partitioner: Partitioner) : RDD[(K, (Iterable[V], Iterable[W]))] = self.withScope { if (partitioner.isInstanceOf[HashPartitioner] && keyClass.isArray) { throw new SparkException("HashPartitioner cannot partition array keys.") } val cg = new CoGroupedRDD[K](Seq(self, other), partitioner) cg.mapValues { case Array(vs, w1s) => (vs.asInstanceOf[Iterable[V]], w1s.asInstanceOf[Iterable[W]]) } }
e.兩個都打印出OneToOneDependency,是因為在CoGroupedRDD里面,getDependencies方法里面,如果rdd有partitioner就都會返回OneToOneDependency(rdd)。
override def getDependencies: Seq[Dependency[_]] = { rdds.map { rdd: RDD[_] => if (rdd.partitioner == Some(part)) { logDebug("Adding one-to-one dependency with " + rdd) new OneToOneDependency(rdd) } else { logDebug("Adding shuffle dependency with " + rdd) new ShuffleDependency[K, Any, CoGroupCombiner]( rdd.asInstanceOf[RDD[_ <: Product2[K, _]]], part, serializer) } } }
join什么時候是寬依賴什么時候是窄依賴? 由上述分析可以知道,如果需要join的兩個表,本身已經有分區(qū)器,且分區(qū)的數目相同,此時,相同的key在同一個分區(qū)內。就是窄依賴。反之,如果兩個需要join的表中沒有分區(qū)器或者分區(qū)數量不同,在join的時候需要shuffle,那么就是寬依賴
上述就是小編為大家分享的如何進行spark join的源碼分析了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關知識,歡迎關注創(chuàng)新互聯(lián)行業(yè)資訊頻道。