今天就跟大家聊聊有關(guān)如何進(jìn)行無序多分類logistic回歸分析,可能很多人都不太了解,為了讓大家更加了解,小編給大家總結(jié)了以下內(nèi)容,希望大家根據(jù)這篇文章可以有所收獲。
成都創(chuàng)新互聯(lián)是專業(yè)的龍口網(wǎng)站建設(shè)公司,龍口接單;提供成都做網(wǎng)站、網(wǎng)站設(shè)計(jì),網(wǎng)頁設(shè)計(jì),網(wǎng)站設(shè)計(jì),建網(wǎng)站,PHP網(wǎng)站建設(shè)等專業(yè)做網(wǎng)站服務(wù);采用PHP框架,可快速的進(jìn)行龍口網(wǎng)站開發(fā)網(wǎng)頁制作和功能擴(kuò)展;專業(yè)做搜索引擎喜愛的網(wǎng)站,專業(yè)的做網(wǎng)站團(tuán)隊(duì),希望更多企業(yè)前來合作!
無序多分類logistic回歸分析,是用于研究自變量 X 與 應(yīng)(因)變量 Y(分類變量)的一種多元回歸分析法。自變量X 可以為分類變量或者連續(xù)型變量,因變量Y 為無序多分類變量,即不考慮因變量之間的等級信息,例如:職業(yè)可分為醫(yī)生、教師、工程師、工人等。
某研究人員欲了解不同社區(qū)和性別之間成年居民獲取健康知識途徑是否不同,對2個(gè)社區(qū)的314名成人進(jìn)行了調(diào)查。(數(shù)據(jù)來源:醫(yī)學(xué)統(tǒng)計(jì)學(xué) 第4版,點(diǎn)擊“閱讀原文”獲取數(shù)據(jù)+密碼:adgm)
變量賦值情況
社區(qū)(X1) | 社區(qū)1=0 ,社區(qū)2 = 1 |
性別(X2) | 男=0 , 女= 1 |
獲取健康知識途徑(Y) | 傳統(tǒng)大眾傳介= 1 ,網(wǎng)絡(luò)= 2 ,社區(qū)宣傳 = 3 |
數(shù)據(jù)視圖
變量視圖
問題剖析:該案例數(shù)據(jù)類型均為分類變量,因變量Y有三個(gè)水平(傳統(tǒng)大眾傳介= 1,網(wǎng)絡(luò)= 2 ,社區(qū)宣傳= 3 )且無序性,故采用無序多分類logistic回歸分析。
【一】加權(quán)處理,對頻數(shù)“freq”進(jìn)行加權(quán)
【二】單擊 “分析” “回歸” “多項(xiàng)logistic(M)”
【三】彈出如下所示對話框
【四】將“變量Y” 選入“因變量”,變量“社區(qū)”(X1)”和“性別(X2)”選入“因子”中,(若為連續(xù)型變量則放入“協(xié)變量”中)
其它選項(xiàng)可根據(jù)具體需要選擇
①個(gè)案處理摘要
②模型擬合信息
對模型進(jìn)行似然比檢驗(yàn),P<0.001 表明該模型有統(tǒng)計(jì)學(xué)意義。兩表的解釋意義一樣。
③參數(shù)估計(jì)值
該結(jié)果以Y變量的“社區(qū)宣傳”為參考類水平。從結(jié)果來看,以檢驗(yàn)水準(zhǔn) α = 0.05,傳統(tǒng)大眾媒介與社區(qū)宣傳相比 ,社區(qū)(X1)與性別(X2)(P<0.01 )均有統(tǒng)計(jì)學(xué)意義(具體解釋可參考下面)。
網(wǎng)絡(luò)與社區(qū)宣傳相比,只有性別(X2)(P=0.004)有統(tǒng)計(jì)學(xué)意義;相比于社區(qū)宣傳,男生比女生更易接受網(wǎng)絡(luò)獲取健康知識途徑(P=0.004 , OR=2. 213),或者可以理解為男生通過網(wǎng)絡(luò)獲取健康知識是女生的2. 213倍。
看完上述內(nèi)容,你們對如何進(jìn)行無序多分類logistic回歸分析有進(jìn)一步的了解嗎?如果還想了解更多知識或者相關(guān)內(nèi)容,請關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,感謝大家的支持。