pandas主要有兩種數據對象
成都創(chuàng)新互聯是一家專注于成都網站設計、成都網站建設與策劃設計,同安網站建設哪家好?成都創(chuàng)新互聯做網站,專注于網站建設10多年,網設計領域的專業(yè)建站公司;建站業(yè)務涵蓋:同安等地區(qū)。同安做網站價格咨詢:028-86922220
注: 后面代碼使用pandas版本0.20.1,通過import pandas as pd引入
Series是一種帶有索引的序列對象
簡單創(chuàng)建如下
# 通過傳入一個序列給pd.Series初始化一個Series對象, 比如list
s1 = pd.Series(list("1234"))
print(s1)
0 1
1 2
2 3
3 4
dtype: object
類似與數據庫table有行列的數據對象
# 通過傳入一個numpy的二維數組或者dict對象給pd.DataFrame初始化一個DataFrame對象
# 通過numpy二維數組
import numpy as np
df1 = pd.DataFrame(np.random.randn(6,4))
print(df1)
0 1 2 3
0 -0.646340 -1.249943 0.393323 -1.561873
1 0.371630 0.069426 1.693097 0.907419
2 -0.328575 -0.256765 0.693798 -0.787343
3 1.875764 -0.416275 -1.028718 0.158259
4 1.644791 -1.321506 -0.337425 0.820689
5 0.006391 -1.447894 0.506203 0.977295
# 通過dict字典
df2 = pd.DataFrame({ 'A' : 1.,
'B' : pd.Timestamp('20130102'),
'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
'D' : np.array([3] * 4,dtype='int32'),
'E' : pd.Categorical(["test","train","test","train"]),
'F' : 'foo' })
print(df2)
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
不管是Series對象還是DataFrame對象都有一個對對象相對應的索引, Series的索引類似于每個元素, DataFrame的索引對應著每一行
在創(chuàng)建對象的時候,每個對象都會初始化一個起始值為0,自增的索引列表, DataFrame同理
# 打印對象的時候,第一列就是索引
print(s1)
0 1
1 2
2 3
3 4
dtype: object
# 或者只查看索引, DataFrame同理
print(s1.index)
這里的增刪查改主要基于DataFrame對象
為了有足夠數據用于展示,這里選擇tushare的數據
tushare安裝
pip install tushare
創(chuàng)建數據對象如下
import tushare as ts
df = ts.get_k_data("000001")
DataFrame 行列,axis 圖解
查看每列的數據類型
# 查看df數據類型
df.dtypes
date object
open float64
close float64
high float64
low float64
volume float64
code object
dtype: object
查看指定指定數量的行
head函數默認查看前5行,tail函數默認查看后5行,可以傳遞指定的數值用于查看指定行數
查看前5行 df.head() date open close high low volume code 0 2015-12-23 9.927 9.935 10.174 9.871 1039018.0 000001 1 2015-12-24 9.919 9.823 9.998 9.744 640229.0 000001 2 2015-12-25 9.855 9.879 9.927 9.815 399845.0 000001 3 2015-12-28 9.895 9.537 9.919 9.537 822408.0 000001 4 2015-12-29 9.545 9.624 9.632 9.529 619802.0 000001 # 查看后5行 df.tail() date open close high low volume code 636 2018-08-01 9.42 9.15 9.50 9.11 814081.0 000001 637 2018-08-02 9.13 8.94 9.15 8.88 931401.0 000001 638 2018-08-03 8.93 8.91 9.10 8.91 476546.0 000001 639 2018-08-06 8.94 8.94 9.11 8.89 554010.0 000001 640 2018-08-07 8.96 9.17 9.17 8.88 690423.0 000001 # 查看前10行 df.head(10) date open close high low volume code 0 2015-12-23 9.927 9.935 10.174 9.871 1039018.0 000001 1 2015-12-24 9.919 9.823 9.998 9.744 640229.0 000001 2 2015-12-25 9.855 9.879 9.927 9.815 399845.0 000001 3 2015-12-28 9.895 9.537 9.919 9.537 822408.0 000001 4 2015-12-29 9.545 9.624 9.632 9.529 619802.0 000001 5 2015-12-30 9.624 9.632 9.640 9.513 532667.0 000001 6 2015-12-31 9.632 9.545 9.656 9.537 491258.0 000001 7 2016-01-04 9.553 8.995 9.577 8.940 563497.0 000001 8 2016-01-05 8.972 9.075 9.210 8.876 663269.0 000001 9 2016-01-06 9.091 9.179 9.202 9.067 515706.0 000001
查看某一行或多行,某一列或多列
# 查看第一行
df[0:1]
date open close high low volume code
0 2015-12-23 9.927 9.935 10.174 9.871 1039018.0 000001
# 查看 10到20行
df[10:21]
date open close high low volume code
10 2016-01-07 9.083 8.709 9.083 8.685 174761.0 000001
11 2016-01-08 8.924 8.852 8.987 8.677 747527.0 000001
12 2016-01-11 8.757 8.566 8.820 8.502 732013.0 000001
13 2016-01-12 8.621 8.605 8.685 8.470 561642.0 000001
14 2016-01-13 8.669 8.526 8.709 8.518 391709.0 000001
15 2016-01-14 8.430 8.574 8.597 8.343 666314.0 000001
16 2016-01-15 8.486 8.327 8.597 8.295 448202.0 000001
17 2016-01-18 8.231 8.287 8.406 8.199 421040.0 000001
18 2016-01-19 8.319 8.526 8.582 8.287 501109.0 000001
19 2016-01-20 8.518 8.390 8.597 8.311 603752.0 000001
20 2016-01-21 8.343 8.215 8.558 8.215 606145.0 000001
# 查看看Date列前5個數據
df["date"].head() # 或者df.date.head()
0 2015-12-23
1 2015-12-24
2 2015-12-25
3 2015-12-28
4 2015-12-29
Name: date, dtype: object
# 查看看Date列,code列, open列前5個數據
df[["date","code", "open"]].head()
date code open
0 2015-12-23 000001 9.927
1 2015-12-24 000001 9.919
2 2015-12-25 000001 9.855
3 2015-12-28 000001 9.895
4 2015-12-29 000001 9.545
使用行列組合條件查詢
# 查看date, code列的第10行
df.loc[10, ["date", "code"]]
date 2016-01-07
code 000001
Name: 10, dtype: object
# 查看date, code列的第10行到20行
df.loc[10:20, ["date", "code"]]
date code
10 2016-01-07 000001
11 2016-01-08 000001
12 2016-01-11 000001
13 2016-01-12 000001
14 2016-01-13 000001
15 2016-01-14 000001
16 2016-01-15 000001
17 2016-01-18 000001
18 2016-01-19 000001
19 2016-01-20 000001
20 2016-01-21 000001
# 查看第一行,open列的數據
df.loc[0, "open"]
9.9269999999999996
通過==位置==查詢
值得注意的是上面的索引值就是特定的位置
# 查看第1行()
df.iloc[0]
date 2015-12-24
open 9.919
close 9.823
high 9.998
low 9.744
volume 640229
code 000001
Name: 0, dtype: object
# 查看最后一行
df.iloc[-1]
date 2018-08-08
open 9.16
close 9.12
high 9.16
low 9.1
volume 29985
code 000001
Name: 640, dtype: object
# 查看第一列,前5個數值
df.iloc[:,0].head()
0 2015-12-24
1 2015-12-25
2 2015-12-28
3 2015-12-29
4 2015-12-30
Name: date, dtype: object
# 查看前2到4行,第1,3列
df.iloc[2:4,[0,2]]
date close
2 2015-12-28 9.537
3 2015-12-29 9.624
通過條件篩選
查看open列大于10的前5行
df[df.open > 10].head()
date open close high low volume code
378 2017-07-14 10.483 10.570 10.609 10.337 1722570.0 000001
379 2017-07-17 10.619 10.483 10.987 10.396 3273123.0 000001
380 2017-07-18 10.425 10.716 10.803 10.299 2349431.0 000001
381 2017-07-19 10.657 10.754 10.851 10.551 1933075.0 000001
382 2017-07-20 10.745 10.638 10.880 10.580 1537338.0 000001
# 查看open列大于10且open列小于10.6的前五行
df[(df.open > 10) & (df.open < 10.6)].head()
date open close high low volume code
378 2017-07-14 10.483 10.570 10.609 10.337 1722570.0 000001
380 2017-07-18 10.425 10.716 10.803 10.299 2349431.0 000001
387 2017-07-27 10.550 10.422 10.599 10.363 1194490.0 000001
388 2017-07-28 10.441 10.569 10.638 10.412 819195.0 000001
390 2017-08-01 10.471 10.865 10.904 10.432 2035709.0 000001
# 查看open列大于10或open列小于10.6的前五行
df[(df.open > 10) | (df.open < 10.6)].head()
date open close high low volume code
0 2015-12-24 9.919 9.823 9.998 9.744 640229.0 000001
1 2015-12-25 9.855 9.879 9.927 9.815 399845.0 000001
2 2015-12-28 9.895 9.537 9.919 9.537 822408.0 000001
3 2015-12-29 9.545 9.624 9.632 9.529 619802.0 000001
4 2015-12-30 9.624 9.632 9.640 9.513 532667.0 000001
在前面已經簡單的說明Series, DataFrame的創(chuàng)建,這里說一些常用有用的創(chuàng)建方式
# 創(chuàng)建2018-08-08到2018-08-15的時間序列,默認時間間隔為Day
s2 = pd.date_range("20180808", periods=7)
print(s2)
DatetimeIndex(['2018-08-08', '2018-08-09', '2018-08-10', '2018-08-11',
'2018-08-12', '2018-08-13', '2018-08-14'],
dtype='datetime64[ns]', freq='D')
# 指定2018-08-08 00:00 到2018-08-09 00:00 時間間隔為小時
# freq參數可使用參數, 參考: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
s3 = pd.date_range("20180808", "20180809", freq="H")
print(s2)
DatetimeIndex(['2018-08-08 00:00:00', '2018-08-08 01:00:00',
'2018-08-08 02:00:00', '2018-08-08 03:00:00',
'2018-08-08 04:00:00', '2018-08-08 05:00:00',
'2018-08-08 06:00:00', '2018-08-08 07:00:00',
'2018-08-08 08:00:00', '2018-08-08 09:00:00',
'2018-08-08 10:00:00', '2018-08-08 11:00:00',
'2018-08-08 12:00:00', '2018-08-08 13:00:00',
'2018-08-08 14:00:00', '2018-08-08 15:00:00',
'2018-08-08 16:00:00', '2018-08-08 17:00:00',
'2018-08-08 18:00:00', '2018-08-08 19:00:00',
'2018-08-08 20:00:00', '2018-08-08 21:00:00',
'2018-08-08 22:00:00', '2018-08-08 23:00:00',
'2018-08-09 00:00:00'],
dtype='datetime64[ns]', freq='H')
# 通過已有序列創(chuàng)建時間序列
s4 = pd.to_datetime(df.date.head())
print(s4)
0 2015-12-24
1 2015-12-25
2 2015-12-28
3 2015-12-29
4 2015-12-30
Name: date, dtype: datetime64[ns]
# 將df 的索引修改為date列的數據,并且將類型轉換為datetime類型
df.index = pd.to_datetime(df.date)
df.head()
date open close high low volume code
date
2015-12-24 2015-12-24 9.919 9.823 9.998 9.744 640229.0 000001
2015-12-25 2015-12-25 9.855 9.879 9.927 9.815 399845.0 000001
2015-12-28 2015-12-28 9.895 9.537 9.919 9.537 822408.0 000001
2015-12-29 2015-12-29 9.545 9.624 9.632 9.529 619802.0 000001
2015-12-30 2015-12-30 9.624 9.632 9.640 9.513 532667.0 000001
# 修改列的字段
df.columns = ["Date", "Open","Close","High","Low","Volume","Code"]
print(df.head())
Date Open Close High Low Volume Code
date
2015-12-24 2015-12-24 9.919 9.823 9.998 9.744 640229.0 000001
2015-12-25 2015-12-25 9.855 9.879 9.927 9.815 399845.0 000001
2015-12-28 2015-12-28 9.895 9.537 9.919 9.537 822408.0 000001
2015-12-29 2015-12-29 9.545 9.624 9.632 9.529 619802.0 000001
2015-12-30 2015-12-30 9.624 9.632 9.640 9.513 532667.0 000001
# 將Open列每個數值加1, apply方法并不直接修改源數據,所以需要將新值復制給df
df.Open = df.Open.apply(lambda x: x+1)
df.head()
Date Open Close High Low Volume Code
date
2015-12-24 2015-12-24 10.919 9.823 9.998 9.744 640229.0 000001
2015-12-25 2015-12-25 10.855 9.879 9.927 9.815 399845.0 000001
2015-12-28 2015-12-28 10.895 9.537 9.919 9.537 822408.0 000001
2015-12-29 2015-12-29 10.545 9.624 9.632 9.529 619802.0 000001
2015-12-30 2015-12-30 10.624 9.632 9.640 9.513 532667.0 000001
# 將Open,Close列都數值上加1,如果多列,apply接收的對象是整個列
df[["Open", "Close"]].head().apply(lambda x: x.apply(lambda x: x+1))
Open Close
date
2015-12-24 11.919 10.823
2015-12-25 11.855 10.879
2015-12-28 11.895 10.537
2015-12-29 11.545 10.624
2015-12-30 11.624 10.632
通過drop方法drop指定的行或者列
注意: drop方法并不直接修改源數據,如果需要使源dataframe對象被修改,需要傳入inplace=True
通過之前的axis圖解,知道行的值(或者說label)在axis=0,列的值(或者說label)在axis=1
# 刪除指定列,刪除Open列
df.drop("Open", axis=1).head() #或者df.drop(df.columns[1])
Date Close High Low Volume Code
date
2015-12-24 2015-12-24 9.823 9.998 9.744 640229.0 000001
2015-12-25 2015-12-25 9.879 9.927 9.815 399845.0 000001
2015-12-28 2015-12-28 9.537 9.919 9.537 822408.0 000001
2015-12-29 2015-12-29 9.624 9.632 9.529 619802.0 000001
2015-12-30 2015-12-30 9.632 9.640 9.513 532667.0 000001
# 刪除第1,3列. 即Open,High列
df.drop(df.columns[[1,3]], axis=1).head() # 或df.drop(["Open", "High], axis=1).head()
Date Close Low Volume Code
date
2015-12-24 2015-12-24 9.823 9.744 640229.0 000001
2015-12-25 2015-12-25 9.879 9.815 399845.0 000001
2015-12-28 2015-12-28 9.537 9.537 822408.0 000001
2015-12-29 2015-12-29 9.624 9.529 619802.0 000001
2015-12-30 2015-12-30 9.632 9.513 532667.0 000001
當數值很大的時候pandas默認會使用科學計數法
# float數據類型以{:.4f}格式顯示,即顯示完整數據且保留后四位
pd.options.display.float_format = '{:.4f}'.format
# descibe方法會計算每列數據對象是數值的count, mean, std, min, max, 以及一定比率的值
df.describe()
Open Close High Low Volume
count 641.0000 641.0000 641.0000 641.0000 641.0000
mean 10.7862 9.7927 9.8942 9.6863 833968.6162
std 1.5962 1.6021 1.6620 1.5424 607731.6934
min 8.6580 7.6100 7.7770 7.4990 153901.0000
25% 9.7080 8.7180 8.7760 8.6500 418387.0000
50% 10.0770 9.0960 9.1450 8.9990 627656.0000
75% 11.8550 10.8350 10.9920 10.7270 1039297.0000
max 15.9090 14.8600 14.9980 14.4470 4262825.0000
# 單獨統(tǒng)計Open列的平均值
df.Open.mean()
10.786248049922001
# 查看居于95%的值, 默認線性擬合
df.Open.quantile(0.95)
14.187
# 查看Open列每個值出現的次數
df.Open.value_counts().head()
9.8050 12
9.8630 10
9.8440 10
9.8730 10
9.8830 8
Name: Open, dtype: int64
刪除或者填充缺失值
# 刪除含有NaN的任意行
df.dropna(how='any')
# 刪除含有NaN的任意列
df.dropna(how='any', axis=1)
# 將NaN的值改為5
df.fillna(value=5)
按行或者列排序, 默認也不修改源數據
# 按列排序
df.sort_index(axis=1).head()
Close Code Date High Low Open Volume
date
2015-12-24 9.8230 000001 2015-12-24 9.9980 9.7440 10.9190 640229.0000
2015-12-25 1.0000 000001 2015-12-25 1.0000 9.8150 10.8550 399845.0000
2015-12-28 1.0000 000001 2015-12-28 1.0000 9.5370 10.8950 822408.0000
2015-12-29 9.6240 000001 2015-12-29 9.6320 9.5290 10.5450 619802.0000
2015-12-30 9.6320 000001 2015-12-30 9.6400 9.5130 10.6240 532667.0000
# 按行排序,不遞增
df.sort_index(ascending=False).head()
Date Open Close High Low Volume Code
date
2018-08-08 2018-08-08 10.1600 9.1100 9.1600 9.0900 153901.0000 000001
2018-08-07 2018-08-07 9.9600 9.1700 9.1700 8.8800 690423.0000 000001
2018-08-06 2018-08-06 9.9400 8.9400 9.1100 8.8900 554010.0000 000001
2018-08-03 2018-08-03 9.9300 8.9100 9.1000 8.9100 476546.0000 000001
2018-08-02 2018-08-02 10.1300 8.9400 9.1500 8.8800 931401.0000 000001
安裝某一列的值排序
# 按照Open列的值從小到大排序
df.sort_values(by="Open")
Date Open Close High Low Volume Code
date
2016-03-01 2016-03-01 8.6580 7.7220 7.7770 7.6260 377910.0000 000001
2016-02-15 2016-02-15 8.6900 7.7930 7.8410 7.6820 278499.0000 000001
2016-01-29 2016-01-29 8.7540 7.9610 8.0240 7.7140 544435.0000 000001
2016-03-02 2016-03-02 8.7620 8.0400 8.0640 7.7380 676613.0000 000001
2016-02-26 2016-02-26 8.7770 7.7930 7.8250 7.6900 392154.0000 000001
concat, 按照行方向或者列方向合并
# 分別取0到2行,2到4行,4到9行組成一個列表,通過concat方法按照axis=0,行方向合并, axis參數不指定,默認為0
split_rows = [df.iloc[0:2,:],df.iloc[2:4,:], df.iloc[4:9]]
pd.concat(split_rows)
Date Open Close High Low Volume Code
date
2015-12-24 2015-12-24 10.9190 9.8230 9.9980 9.7440 640229.0000 000001
2015-12-25 2015-12-25 10.8550 1.0000 1.0000 9.8150 399845.0000 000001
2015-12-28 2015-12-28 10.8950 1.0000 1.0000 9.5370 822408.0000 000001
2015-12-29 2015-12-29 10.5450 9.6240 9.6320 9.5290 619802.0000 000001
2015-12-30 2015-12-30 10.6240 9.6320 9.6400 9.5130 532667.0000 000001
2015-12-31 2015-12-31 10.6320 9.5450 9.6560 9.5370 491258.0000 000001
2016-01-04 2016-01-04 10.5530 8.9950 9.5770 8.9400 563497.0000 000001
2016-01-05 2016-01-05 9.9720 9.0750 9.2100 8.8760 663269.0000 000001
2016-01-06 2016-01-06 10.0910 9.1790 9.2020 9.0670 515706.0000 000001
# 分別取2到3列,3到5列,5列及以后列數組成一個列表,通過concat方法按照axis=1,列方向合并
split_columns = [df.iloc[:,1:2], df.iloc[:,2:4], df.iloc[:,4:]]
pd.concat(split_columns, axis=1).head()
Open Close High Low Volume Code
date
2015-12-24 10.9190 9.8230 9.9980 9.7440 640229.0000 000001
2015-12-25 10.8550 1.0000 1.0000 9.8150 399845.0000 000001
2015-12-28 10.8950 1.0000 1.0000 9.5370 822408.0000 000001
2015-12-29 10.5450 9.6240 9.6320 9.5290 619802.0000 000001
2015-12-30 10.6240 9.6320 9.6400 9.5130 532667.0000 000001
追加行, 相應的還有insert, 插入插入到指定位置
# 將第一行追加到最后一行
df.append(df.iloc[0,:], ignore_index=True).tail()
Date Open Close High Low Volume Code
637 2018-08-03 9.9300 8.9100 9.1000 8.9100 476546.0000 000001
638 2018-08-06 9.9400 8.9400 9.1100 8.8900 554010.0000 000001
639 2018-08-07 9.9600 9.1700 9.1700 8.8800 690423.0000 000001
640 2018-08-08 10.1600 9.1100 9.1600 9.0900 153901.0000 000001
641 2015-12-24 10.9190 9.8230 9.9980 9.7440 640229.0000 000001
由于dataframe是引用對象,所以需要顯示調用copy方法用以復制整個dataframe對象
pandas的繪圖是使用matplotlib,如果想要畫的更細致, 可以使用matplotplib,不過簡單的畫一些圖還是不錯的
因為上圖太麻煩,這里就不配圖了,可以在資源文件里面查看pandas-blog.ipynb文件或者自己敲一遍代碼。
# 這里使用notbook,為了直接在輸出中顯示,需要以下配置
%matplotlib inline
# 繪制Open,Low,Close.High的線性圖
df[["Open", "Low", "High", "Close"]].plot()
# 繪制面積圖
df[["Open", "Low", "High", "Close"]].plot(kind="area")
讀寫常見文件格式,如csv,excel,json等, 甚至是讀取==系統(tǒng)的剪切板==.這個功能有時候很有用。直接將鼠標選中復制的內容讀取創(chuàng)建dataframe對象。
# 將df數據保存到當前工作目錄的stock.csv文件
df.to_csv("stock.csv")
# 查看stock.csv文件前5行
with open("stock.csv") as rf:
print(rf.readlines()[:5])
['date,Date,Open,Close,High,Low,Volume,Code\n', '2015-12-24,2015-12-24,9.919,9.823,9.998,9.744,640229.0,000001\n', '2015-12-25,2015-12-25,9.855,9.879,9.927,9.815,399845.0,000001\n', '2015-12-28,2015-12-28,9.895,9.537,9.919,9.537,822408.0,000001\n', '2015-12-29,2015-12-29,9.545,9.624,9.632,9.529,619802.0,000001\n']
# 讀取stock.csv文件并將第一行作為index
df2 = pd.read_csv("stock.csv", index_col=0)
df2.head()
Date Open Close High Low Volume Code
date
2015-12-24 2015-12-24 9.9190 9.8230 9.9980 9.7440 640229.0000 1
2015-12-25 2015-12-25 9.8550 9.8790 9.9270 9.8150 399845.0000 1
2015-12-28 2015-12-28 9.8950 9.5370 9.9190 9.5370 822408.0000 1
2015-12-29 2015-12-29 9.5450 9.6240 9.6320 9.5290 619802.0000 1
2015-12-30 2015-12-30 9.6240 9.6320 9.6400 9.5130 532667.0000 1
# 讀取stock.csv文件并將第一行作為index,并且將000001作為str類型讀取, 不然會被解析成整數
df2 = pd.read_csv("stock.csv", index_col=0, dtype={"Code": str})
df2.head()
這里以處理web日志為例,也許不太實用 ,因為ELK處理這些綽綽有余,不過喜歡什么自己來也未嘗不可
日志文件: https://raw.githubusercontent.com/Apache-Labor/labor/master/labor-04/labor-04-example-access.log
# 日志格式
# 字段說明, 參考:https://ru.wikipedia.org/wiki/Access.log
%h%l%u%t \“%r \”%> s%b \“%{Referer} i \”\“%{User-Agent} i \”
# 具體示例
75.249.65.145 US - [2015-09-02 10:42:51.003372] "GET /cms/tina-access-editor-for-download/ HTTP/1.1" 200 7113 "-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)" www.example.com 124.165.3.7 443 redirect-handler - + "-" Vea2i8CoAwcAADevXAgAAAAB TLSv1.2 ECDHE-RSA-AES128-GCM-SHA256 701 12118 -% 88871 803 0 0 0 0
解析日志文件
HOST = r'^(?P.*?)'
SPACE = r'\s'
IDENTITY = r'\S+'
USER = r"\S+"
TIME = r'\[(?P
將數據注入DataFrame對象
COLUMNS = ["Host", "Time", "Method", "Path", "Protocol", "status", "size", "User_Agent"]
field_lis = []
with open("access.log") as rf:
for line in rf:
# 由于一些記錄不能匹配,所以需要捕獲異常, 不能捕獲的數據格式如下
# 80.32.156.105 - - [27/Mar/2009:13:39:51 +0100] "GET HTTP/1.1" 400 - "-" "-" "-"
# 由于重點不在寫正則表達式這里就略過了
try:
fields = reg.match(line).groups()
except Exception as e:
#print(e)
#print(line)
pass
field_lis.append(fields)
log_df = pd.DataFrame(field_lis)
# 修改列名
log_df.columns = COLUMNS
def parse_time(value):
try:
return pd.to_datetime(value)
except Exception as e:
print(e)
print(value)
# 將Time列的值修改成pandas可解析的時間格式
log_df.Time = log_df.Time.apply(lambda x: x.replace(":", " ", 1))
log_df.Time = log_df.Time.apply(parse_time)
# 修改index, 將Time列作為index,并drop掉在Time列
log_df.index = pd.to_datetime(log_df.Time)
log_df.drop("Time", inplace=True)
log_df.head()
Host Time Method Path Protocol status size User_Agent
Time
2009-03-22 06:00:32 88.191.254.20 2009-03-22 06:00:32 GET / HTTP/1.0 200 8674 "-
2009-03-22 06:06:20 66.249.66.231 2009-03-22 06:06:20 GET /popup.php?choix=-89 HTTP/1.1 200 1870 "Mozilla/5.0 (compatible; Googlebot/2.1; +htt...
2009-03-22 06:11:20 66.249.66.231 2009-03-22 06:11:20 GET /specialiste.php HTTP/1.1 200 10743 "Mozilla/5.0 (compatible; Googlebot/2.1; +htt...
2009-03-22 06:40:06 83.198.250.175 2009-03-22 06:40:06 GET / HTTP/1.1 200 8714 "Mozilla/4.0 (compatible; MSIE 7.0; Windows N...
2009-03-22 06:40:06 83.198.250.175 2009-03-22 06:40:06 GET /style.css HTTP/1.1 200 1692 "Mozilla/4.0 (compatible; MSIE 7.0; Windows N...
查看數據類型
# 查看數據類型
log_df.dtypes
Host object
Time datetime64[ns]
Method object
Path object
Protocol object
status object
size object
User_Agent object
dtype: object
由上可知, 除了Time字段是時間類型,其他都是object,但是Size, Status應該為數字
def parse_number(value):
try:
return pd.to_numeric(value)
except Exception as e:
pass
return 0
# 將Size,Status字段值改為數值類型
log_df[["Status","Size"]] = log_df[["Status","Size"]].apply(lambda x: x.apply(parse_number))
log_df.dtypes
Host object
Time datetime64[ns]
Method object
Path object
Protocol object
Status int64
Size int64
User_Agent object
dtype: object
統(tǒng)計status數據
# 統(tǒng)計不同status值的次數
log_df.Status.value_counts()
200 5737
304 1540
404 1186
400 251
302 37
403 3
206 2
Name: Status, dtype: int64
繪制pie圖
log_df.Status.value_counts().plot(kind="pie", figsize=(10,8))
查看日志文件時間跨度
log_df.index.max() - log_df.index.min()
Timedelta('15 days 11:12:03')
分別查看起始,終止時間
print(log_df.index.max())
print(log_df.index.min())
2009-04-06 17:12:35
2009-03-22 06:00:32
按照此方法還可以統(tǒng)計Method, User_Agent字段 ,不過User_Agent還需要額外清洗以下數據
統(tǒng)計top 10 IP地址
91.121.31.184 745
88.191.254.20 441
41.224.252.122 420
194.2.62.185 255
86.75.35.144 184
208.89.192.106 170
79.82.3.8 161
90.3.72.207 157
62.147.243.132 150
81.249.221.143 141
Name: Host, dtype: int64
繪制請求走勢圖
log_df2 = log_df.copy()
# 為每行加一個request字段,值為1
log_df2["Request"] = 1
# 每一小時統(tǒng)計一次request數量,并將NaN值替代為0,最后繪制線性圖,尺寸為16x9
log_df2.Request.resample("H").sum().fillna(0).plot(kind="line",figsize=(16,10))
分別繪圖
分別對202,304,404狀態(tài)重新取樣,并放在一個列表里面
req_df_lis = [
log_df2[log_df2.Status == 200].Request.resample("H").sum().fillna(0),
log_df2[log_df2.Status == 304].Request.resample("H").sum().fillna(0),
log_df2[log_df2.Status == 404].Request.resample("H").sum().fillna(0)
]
# 將三個dataframe組合起來
req_df = pd.concat(req_df_lis,axis=1)
req_df.columns = ["200", "304", "404"]
# 繪圖
req_df.plot(figsize=(16,10))
https://pandas.pydata.org/pandas-docs/stable/index.html
https://github.com/youerning/blog/tree/master/pandas