ID3決策樹是以信息增益作為決策標(biāo)準(zhǔn)的一種貪心決策樹算法
成都創(chuàng)新互聯(lián)專注于嶺東企業(yè)網(wǎng)站建設(shè),響應(yīng)式網(wǎng)站開發(fā),購物商城網(wǎng)站建設(shè)。嶺東網(wǎng)站建設(shè)公司,為嶺東等地區(qū)提供建站服務(wù)。全流程定制制作,專業(yè)設(shè)計(jì),全程項(xiàng)目跟蹤,成都創(chuàng)新互聯(lián)專業(yè)和態(tài)度為您提供的服務(wù)# -*- coding: utf-8 -*- from numpy import * import math import copy import cPickle as pickle class ID3DTree(object): def __init__(self): # 構(gòu)造方法 self.tree = {} # 生成樹 self.dataSet = [] # 數(shù)據(jù)集 self.labels = [] # 標(biāo)簽集 # 數(shù)據(jù)導(dǎo)入函數(shù) def loadDataSet(self, path, labels): recordList = [] fp = open(path, "rb") # 讀取文件內(nèi)容 content = fp.read() fp.close() rowList = content.splitlines() # 按行轉(zhuǎn)換為一維表 recordList = [row.split("\t") for row in rowList if row.strip()] # strip()函數(shù)刪除空格、Tab等 self.dataSet = recordList self.labels = labels # 執(zhí)行決策樹函數(shù) def train(self): labels = copy.deepcopy(self.labels) self.tree = self.buildTree(self.dataSet, labels) # 構(gòu)件決策樹:穿件決策樹主程序 def buildTree(self, dataSet, lables): cateList = [data[-1] for data in dataSet] # 抽取源數(shù)據(jù)集中的決策標(biāo)簽列 # 程序終止條件1:如果classList只有一種決策標(biāo)簽,停止劃分,返回這個(gè)決策標(biāo)簽 if cateList.count(cateList[0]) == len(cateList): return cateList[0] # 程序終止條件2:如果數(shù)據(jù)集的第一個(gè)決策標(biāo)簽只有一個(gè),返回這個(gè)標(biāo)簽 if len(dataSet[0]) == 1: return self.maxCate(cateList) # 核心部分 bestFeat = self.getBestFeat(dataSet) # 返回?cái)?shù)據(jù)集的最優(yōu)特征軸 bestFeatLabel = lables[bestFeat] tree = {bestFeatLabel: {}} del (lables[bestFeat]) # 抽取最優(yōu)特征軸的列向量 uniqueVals = set([data[bestFeat] for data in dataSet]) # 去重 for value in uniqueVals: # 決策樹遞歸生長 subLables = lables[:] # 將刪除后的特征類別集建立子類別集 # 按最優(yōu)特征列和值分隔數(shù)據(jù)集 splitDataset = self.splitDataSet(dataSet, bestFeat, value) subTree = self.buildTree(splitDataset, subLables) # 構(gòu)建子樹 tree[bestFeatLabel][value] = subTree return tree # 計(jì)算出現(xiàn)次數(shù)最多的類別標(biāo)簽 def maxCate(self, cateList): items = dict([(cateList.count(i), i) for i in cateList]) return items[max(items.keys())] # 計(jì)算最優(yōu)特征 def getBestFeat(self, dataSet): # 計(jì)算特征向量維,其中最后一列用于類別標(biāo)簽 numFeatures = len(dataSet[0]) - 1 # 特征向量維數(shù)=行向量維數(shù)-1 baseEntropy = self.computeEntropy(dataSet) # 基礎(chǔ)熵 bestInfoGain = 0.0 # 初始化最優(yōu)的信息增益 bestFeature = -1 # 初始化最優(yōu)的特征軸 # 外循環(huán):遍歷數(shù)據(jù)集各列,計(jì)算最優(yōu)特征軸 # i為數(shù)據(jù)集列索引:取值范圍0~(numFeatures-1) for i in xrange(numFeatures): uniqueVals = set([data[i] for data in dataSet]) # 去重 newEntropy = 0.0 for value in uniqueVals: subDataSet = self.splitDataSet(dataSet, i, value) prob = len(subDataSet) / float(len(dataSet)) newEntropy += prob * self.computeEntropy(subDataSet) infoGain = baseEntropy - newEntropy if (infoGain > bestInfoGain): # 信息增益大于0 bestInfoGain = infoGain # 用當(dāng)前信息增益值替代之前的最優(yōu)增益值 bestFeature = i # 重置最優(yōu)特征為當(dāng)前列 return bestFeature # 計(jì)算信息熵 # @staticmethod def computeEntropy(self, dataSet): dataLen = float(len(dataSet)) cateList = [data[-1] for data in dataSet] # 從數(shù)據(jù)集中得到類別標(biāo)簽 # 得到類別為key、 出現(xiàn)次數(shù)value的字典 items = dict([(i, cateList.count(i)) for i in cateList]) infoEntropy = 0.0 for key in items: # 香農(nóng)熵: = -p*log2(p) --infoEntropy = -prob * log(prob, 2) prob = float(items[key]) / dataLen infoEntropy -= prob * math.log(prob, 2) return infoEntropy # 劃分?jǐn)?shù)據(jù)集: 分割數(shù)據(jù)集; 刪除特征軸所在的數(shù)據(jù)列,返回剩余的數(shù)據(jù)集 # dataSet : 數(shù)據(jù)集; axis: 特征軸; value: 特征軸的取值 def splitDataSet(self, dataSet, axis, value): rtnList = [] for featVec in dataSet: if featVec[axis] == value: rFeatVec = featVec[:axis] # list操作:提取0~(axis-1)的元素 rFeatVec.extend(featVec[axis + 1:]) rtnList.append(rFeatVec) return rtnList # 存取樹到文件 def storetree(self, inputTree, filename): fw = open(filename,'w') pickle.dump(inputTree, fw) fw.close() # 從文件抓取樹 def grabTree(self, filename): fr = open(filename) return pickle.load(fr)