真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

Pandas中split()方法如何使用

這期內(nèi)容當(dāng)中小編將會(huì)給大家?guī)?lái)有關(guān) Pandas中split()方法如何使用,文章內(nèi)容豐富且以專業(yè)的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。

創(chuàng)新互聯(lián)于2013年成立,先為開(kāi)封等服務(wù)建站,開(kāi)封等地企業(yè),進(jìn)行企業(yè)商務(wù)咨詢服務(wù)。為開(kāi)封企業(yè)網(wǎng)站制作PC+手機(jī)+微官網(wǎng)三網(wǎng)同步一站式服務(wù)解決您的所有建站問(wèn)題。

split()正序分割列;rsplit()逆序分割列
Series.str.split(pat=None, n=-1, expand=False)
參數(shù):
pat : 字符串,默認(rèn)使用空白分割.
n : 整型,默認(rèn)為-1,既使用所有的分割點(diǎn)分割
expand : 布爾值,默認(rèn)為False.如果為真返回?cái)?shù)據(jù)框(DataFrame)或復(fù)雜索引(MultiIndex);如果為True,返回序列(Series)或者索引(Index).
return_type : 棄用,使用spand參數(shù)代替
返回值:
split : 參考expand參數(shù)

例子:
將一下列表按第一個(gè)空格分割成兩個(gè)列表,列表的名稱分別是“Property”和“Description”

Property Description
year The year of the datetime
month The month of the datetime
day The days of the datetime
hour The hour of the datetime
minute The minutes of the datetime
second The seconds of the datetime
microsecond The microseconds of the datetime
nanosecond The nanoseconds of the datetime
date Returns datetime.date (does not contain timezone information)
time Returns datetime.time (does not contain timezone information)
dayofyear The ordinal day of year
weekofyear The week ordinal of the year
week The week ordinal of the year
dayofweek The numer of the day of the week with Monday=0, Sunday=6
weekday The number of the day of the week with Monday=0, Sunday=6
weekday_name The name of the day in a week (ex: Friday)
quarter Quarter of the date: Jan=Mar = 1, Apr-Jun = 2, etc.
days_in_month The number of days in the month of the datetime
is_month_start Logical indicating if first day of month (defined by frequency)
is_month_end Logical indicating if last day of month (defined by frequency)
is_quarter_start Logical indicating if first day of quarter (defined by frequency)
is_quarter_end Logical indicating if last day of quarter (defined by frequency)
is_year_start Logical indicating if first day of year (defined by frequency)
is_year_end Logical indicating if last day of year (defined by frequency)
is_leap_year Logical indicating if the date belongs to a leap year
import pandas as pd
df=pd.read_excel("C:/Users/Administrator/Desktop/New Microsoft Excel 工作表.xlsx")#讀取工作表df["Property"],df["Description"]=df["Property Description"].str.split(" ",n=1).str#按第一個(gè)空格分割df.drop("Property Description",axis=1,inplace=True)#刪除原有的列df.to_csv("C:/Users/Administrator/Desktop/New Microsoft Excel 工作表.csv",index=False)#保存為csv,并刪除索引

結(jié)果如下圖所示:

PropertyDescription
yearThe year of the datetime
monthThe month of the datetime
dayThe days of the datetime
hourThe hour of the datetime
minuteThe minutes of the datetime
secondThe seconds of the datetime
microsecondThe microseconds of the datetime
nanosecondThe nanoseconds of the datetime
dateReturns datetime.date (does not contain timezone information)
timeReturns datetime.time (does not contain timezone information)
dayofyearThe ordinal day of year
weekofyearThe week ordinal of the year
weekThe week ordinal of the year
dayofweekThe numer of the day of the week with Monday=0, Sunday=6
weekdayThe number of the day of the week with Monday=0, Sunday=6
weekday_nameThe name of the day in a week (ex: Friday)
quarterQuarter of the date: Jan=Mar = 1, Apr-Jun = 2, etc.
days_in_monthThe number of days in the month of the datetime
is_month_startLogical indicating if first day of month (defined by frequency)
is_month_endLogical indicating if last day of month (defined by frequency)
is_quarter_startLogical indicating if first day of quarter (defined by frequency)
is_quarter_endLogical indicating if last day of quarter (defined by frequency)
is_year_startLogical indicating if first day of year (defined by frequency)
is_year_endLogical indicating if last day of year (defined by frequency)
is_leap_yearLogical indicating if the date belongs to a leap year

上述就是小編為大家分享的 Pandas中split()方法如何使用了,如果剛好有類似的疑惑,不妨參照上述分析進(jìn)行理解。如果想知道更多相關(guān)知識(shí),歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道。


當(dāng)前標(biāo)題:Pandas中split()方法如何使用
標(biāo)題URL:http://weahome.cn/article/jeidoc.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部