這篇文章主要介紹eclipse中如何運行spark機器學(xué)習(xí)代碼,文中介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們一定要看完!
成都創(chuàng)新互聯(lián)主營欽南網(wǎng)站建設(shè)的網(wǎng)絡(luò)公司,主營網(wǎng)站建設(shè)方案,成都app軟件開發(fā)公司,欽南h5重慶小程序開發(fā)搭建,欽南網(wǎng)站營銷推廣歡迎欽南等地區(qū)企業(yè)咨詢
直接在eclipse運行,不需要hadoop,不需要搭建spark,只需要pom.xml中的依賴完整
import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.mllib.classification.LogisticRegressionWithSGD import org.apache.spark.mllib.feature.HashingTF import org.apache.spark.mllib.regression.LabeledPoint object MLlib { def main(args: Array[String]) { val conf = new SparkConf().setAppName(s"Book example: Scala").setMaster("local[2]") val sc = new SparkContext(conf) // Load 2 types of emails from text files: spam and ham (non-spam). // Each line has text from one email. val spam = sc.textFile("file:/Users/xxx/Documents/hadoopTools/scala/eclipse/Eclipse.app/Contents/MacOS/workspace/spark_ml/src/main/resources/files/spam.txt") val ham = sc.textFile("file:/Users/xxx/Documents/hadoopTools/scala/eclipse/Eclipse.app/Contents/MacOS/workspace/spark_ml/src/main/resources/files/ham.txt") // val abc=sc.parallelize(seq, 2) // Create a HashingTF instance to map email text to vectors of 100 features. val tf = new HashingTF(numFeatures = 100) // Each email is split into words, and each word is mapped to one feature. val spamFeatures = spam.map(email => tf.transform(email.split(" "))) val hamFeatures = ham.map(email => tf.transform(email.split(" "))) // Create LabeledPoint datasets for positive (spam) and negative (ham) examples. val positiveExamples = spamFeatures.map(features => LabeledPoint(1, features)) val negativeExamples = hamFeatures.map(features => LabeledPoint(0, features)) val trainingData = positiveExamples ++ negativeExamples trainingData.cache() // Cache data since Logistic Regression is an iterative algorithm. // Create a Logistic Regression learner which uses the LBFGS optimizer. val lrLearner = new LogisticRegressionWithSGD() // Run the actual learning algorithm on the training data. val model = lrLearner.run(trainingData) // Test on a positive example (spam) and a negative one (ham). // First apply the same HashingTF feature transformation used on the training data. val posTestExample = tf.transform("O M G GET cheap stuff by sending money to ...".split(" ")) val negTestExample = tf.transform("Hi Dad, I started studying Spark the other ...".split(" ")) // Now use the learned model to predict spam/ham for new emails. println(s"Prediction for positive test example: ${model.predict(posTestExample)}") println(s"Prediction for negative test example: ${model.predict(negTestExample)}") sc.stop() } }
sc.textFile里的參數(shù)是文件在本地的絕對路徑。
setMaster("local[2]") 表示是本地運行,只使用兩個核
HashingTF 用來從文檔中創(chuàng)建詞條目的頻率特征向量,這里設(shè)置維度為100.
TF-IDF(Term frequency-inverse document frequency ) 是文本挖掘中一種廣泛使用的特征向量化方法。TF-IDF反映了語料中單詞對文檔的重要程度。假設(shè)單詞用t表示,文檔用d表示,語料用D表示,那么文檔頻度DF(t, D)是包含單詞t的文檔數(shù)。如果我們只是使用詞頻度量重要性,就會很容易過分強調(diào)重負(fù)次數(shù)多但攜帶信息少的單詞,例如:”a”, “the”以及”of”。如果某個單詞在整個語料庫中高頻出現(xiàn),意味著它沒有攜帶專門針對某特殊文檔的信息。逆文檔頻度(IDF)是單詞攜帶信息量的數(shù)值度量。
pom.xml
4.0.0 com.yanan.spark_maven spark1.3.1 0.0.1-SNAPSHOT jar spark_maven http://maven.apache.org UTF-8 1.9.13 junit junit 3.8.1 test org.scala-lang scala-library 2.10.4 org.apache.spark spark-core_2.10 1.3.1 org.apache.spark spark-mllib_2.10 1.3.1 org.scala-tools maven-scala-plugin compile testCompile scala-tools.org Scala-tools Maven2 Repository http://scala-tools.org/repo-releases cloudera-repo-releases https://repository.cloudera.com/artifactory/repo/
ham.txt
Dear Spark Learner, Thanks so much for attending the Spark Summit 2014! Check out videos of talks from the summit at ... Hi Mom, Apologies for being late about emailing and forgetting to send you the package. I hope you and bro have been ... Wow, hey Fred, just heard about the Spark petabyte sort. I think we need to take time to try it out immediately ... Hi Spark user list, This is my first question to this list, so thanks in advance for your help! I tried running ... Thanks Tom for your email. I need to refer you to Alice for this one. I haven't yet figured out that part either ... Good job yesterday! I was attending your talk, and really enjoyed it. I want to try out GraphX ... Summit demo got whoops from audience! Had to let you know. --Joe
spam.txt
Dear sir, I am a Prince in a far kingdom you have not heard of. I want to send you money via wire transfer so please ... Get Vi_agra real cheap! Send money right away to ... Oh my gosh you can be really strong too with these drugs found in the rainforest. Get them cheap right now ... YOUR COMPUTER HAS BEEN INFECTED! YOU MUST RESET YOUR PASSWORD. Reply to this email with your password and SSN ... THIS IS NOT A SCAM! Send money and get access to awesome stuff really cheap and never have to ...
Vi_agra 本來是去掉下劃線的
以上是“eclipse中如何運行spark機器學(xué)習(xí)代碼”這篇文章的所有內(nèi)容,感謝各位的閱讀!希望分享的內(nèi)容對大家有幫助,更多相關(guān)知識,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道!