真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

Spark-SQL的具體編程場景

入門案例:

object SparkSqlTest {
    def main(args: Array[String]): Unit = {
        //屏蔽多余的日志
        Logger.getLogger("org.apache.hadoop").setLevel(Level.WARN)
        Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
        Logger.getLogger("org.project-spark").setLevel(Level.WARN)
        //構(gòu)建編程入口
        val conf: SparkConf = new SparkConf()
        conf.setAppName("SparkSqlTest")
            .setMaster("local[2]")
        val spark: SparkSession = SparkSession.builder().config(conf)
            .getOrCreate()

        /**
          * 注意在spark 2.0之后:
          * val sqlContext = new SQLContext(sparkContext)
          * val hiveContext = new HiveContext(sparkContext)
          * 主構(gòu)造器被私有化,所以這里只能使用SparkSession對象創(chuàng)建
          */
        //創(chuàng)建sqlcontext對象
        val sqlContext: SQLContext = spark.sqlContext
        //加載數(shù)據(jù)為DataFrame,這里加載的是json數(shù)據(jù)
        //數(shù)據(jù)格式:{name:'',age:18}
        val perDF: DataFrame = sqlContext.read.json("hdfs://zzy/data/person.json")

        //查看二維表結(jié)構(gòu)
        perDF.printSchema()

        //查看數(shù)據(jù),默認(rèn)顯示20條記錄
        perDF.show()

        //復(fù)雜查詢
        perDF.select("name").show() //指定字段進(jìn)行查詢
        perDF.select(new Column("name"),new Column("age").>(18)).show()  //指定查詢條件進(jìn)行查詢
        perDF.select("name","age").where(new Column("age").>(18)).show() //指定查詢條件進(jìn)行查詢
        perDF.select("age").groupBy("age").avg("age") //聚合操作
    }
}

如果對入門案例不太了解的話,接下來分步驟的介紹:

創(chuàng)新互聯(lián)公司專注于五龍口網(wǎng)站建設(shè)服務(wù)及定制,我們擁有豐富的企業(yè)做網(wǎng)站經(jīng)驗。 熱誠為您提供五龍口營銷型網(wǎng)站建設(shè),五龍口網(wǎng)站制作、五龍口網(wǎng)頁設(shè)計、五龍口網(wǎng)站官網(wǎng)定制、小程序設(shè)計服務(wù),打造五龍口網(wǎng)絡(luò)公司原創(chuàng)品牌,更為您提供五龍口網(wǎng)站排名全網(wǎng)營銷落地服務(wù)。

(1)RDD/DataSet//DataFrame/list 之間的轉(zhuǎn)化

   通過RDD轉(zhuǎn)換為DataFrame/DataSet,有兩種方式:
    - 通過反射的方式將RDD或者外部的集合轉(zhuǎn)化為dataframe/datasets
    - 要通過編程動態(tài)的來將外部的集合或者RDD轉(zhuǎn)化為dataframe或者dataset
   注意:如果是dataFrame對應(yīng)的是java bean ,如果是dataSet對應(yīng)的是case class

通過反射的方式將RDD或者外部的集合轉(zhuǎn)化為dataframe/datasets

數(shù)據(jù)準(zhǔn)備

case class Student(name:String, birthday:String, province:String)
val stuList = List(
      new Student("委xx", "1998-11-11", "山西"),
      new Student("吳xx", "1999-06-08", "河南"),
      new Student("戚xx", "2000-03-08", "山東"),
      new Student("王xx", "1997-07-09", "安徽"),
      new Student("薛xx", "2002-08-09", "遼寧")
    )

list --> DataFrame:

        //屏蔽多余的日志
        Logger.getLogger("org.apache.hadoop").setLevel(Level.WARN)
        Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
        Logger.getLogger("org.project-spark").setLevel(Level.WARN)
        //構(gòu)建編程入口
        val conf: SparkConf = new SparkConf()
        conf.setAppName("SparkSqlTest")
            .setMaster("local[2]")
            .set("spark.serializer","org.apache.spark.serializer.KryoSerializer")
            .registerKryoClasses(Array(classOf[Student]))
        val spark: SparkSession = SparkSession.builder().config(conf)
            .getOrCreate()

        //創(chuàng)建sqlcontext對象
        val sqlContext: SQLContext = spark.sqlContext

        /**
          * list--->DataFrame
          * 將scala集合轉(zhuǎn)換為java集合
          */
        val javaList: util.List[Student] = JavaConversions.seqAsJavaList(stuList)
        val stuDF: DataFrame = sqlContext.createDataFrame(javaList,classOf[Student])
        val count = stuDF.count()
        println(count)

RDD --> DataFrame:

        //屏蔽多余的日志
        Logger.getLogger("org.apache.hadoop").setLevel(Level.WARN)
        Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
        Logger.getLogger("org.project-spark").setLevel(Level.WARN)
        //構(gòu)建編程入口
        val conf: SparkConf = new SparkConf()
        conf.setAppName("SparkSqlTest")
            .setMaster("local[2]")
            .set("spark.serializer","org.apache.spark.serializer.KryoSerializer")
            .registerKryoClasses(Array(classOf[Student]))
        val spark: SparkSession = SparkSession.builder().config(conf)
            .getOrCreate()

        //創(chuàng)建sqlcontext對象
        val sqlContext: SQLContext = spark.sqlContext
        //創(chuàng)建sparkContext
        val sc: SparkContext = spark.sparkContext
        /**
          * RDD--->DataFrame
          */
        val stuRDD: RDD[Student] = sc.makeRDD(stuList)
        val stuDF: DataFrame = sqlContext.createDataFrame(stuRDD,classOf[Student])
        val count = stuDF.count()
        println(count)

list --> DataSet:

        //屏蔽多余的日志
        Logger.getLogger("org.apache.hadoop").setLevel(Level.WARN)
        Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
        Logger.getLogger("org.project-spark").setLevel(Level.WARN)
        //構(gòu)建編程入口
        val conf: SparkConf = new SparkConf()
        conf.setAppName("SparkSqlTest")
            .setMaster("local[2]")
            .set("spark.serializer","org.apache.spark.serializer.KryoSerializer")
            .registerKryoClasses(Array(classOf[Student]))
        val spark: SparkSession = SparkSession.builder().config(conf)
            .getOrCreate()

        //創(chuàng)建sqlcontext對象
        val sqlContext: SQLContext = spark.sqlContext
        //創(chuàng)建sparkContext
        val sc: SparkContext = spark.sparkContext
        /**
          * list--->DataSet
          */
        //如果創(chuàng)建Dataset 必須導(dǎo)入下面的隱式轉(zhuǎn)換
        import spark.implicits._
        val stuDF: Dataset[Student] = sqlContext.createDataset(stuList)
        stuDF.createTempView("student")
        //使用完整的sql語句進(jìn)行查詢,使用反射的方式,只有Dataset可以,dataFrame不行
        val sql=
            """
              |select * from student
            """.stripMargin
        spark.sql(sql).show()

Spark-SQL的具體編程場景
RDD --> DataSet:

        //屏蔽多余的日志
        Logger.getLogger("org.apache.hadoop").setLevel(Level.WARN)
        Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
        Logger.getLogger("org.project-spark").setLevel(Level.WARN)
        //構(gòu)建編程入口
        val conf: SparkConf = new SparkConf()
        conf.setAppName("SparkSqlTest")
            .setMaster("local[2]")
            .set("spark.serializer","org.apache.spark.serializer.KryoSerializer")
            .registerKryoClasses(Array(classOf[Student]))
        val spark: SparkSession = SparkSession.builder().config(conf)
            .getOrCreate()

        //創(chuàng)建sqlcontext對象
        val sqlContext: SQLContext = spark.sqlContext
        //創(chuàng)建sparkContext
        val sc: SparkContext = spark.sparkContext
        /**
          * RDD--->DataSet
          */
        //如果創(chuàng)建Dataset 必須導(dǎo)入下面的隱式轉(zhuǎn)換
        import spark.implicits._
        val stuRDD: RDD[Student] = sc.makeRDD(stuList)
        val stuDF: Dataset[Student] = sqlContext.createDataset(stuRDD)
        stuDF.createTempView("student")
        //使用完整的sql語句進(jìn)行查詢,使用反射的方式,只有Dataset可以,dataFrame不行
        val sql=
            """
              |select * from student
            """.stripMargin
        spark.sql(sql).show()
通過編程動態(tài)的來將外部的集合或者RDD轉(zhuǎn)化為dataframe或者dataset

list --> DataFrame:

        //屏蔽多余的日志
        Logger.getLogger("org.apache.hadoop").setLevel(Level.WARN)
        Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
        Logger.getLogger("org.project-spark").setLevel(Level.WARN)
        //構(gòu)建編程入口
        val conf: SparkConf = new SparkConf()
        conf.setAppName("SparkSqlTest")
            .setMaster("local[2]")
            .set("spark.serializer","org.apache.spark.serializer.KryoSerializer")
            .registerKryoClasses(Array(classOf[Student]))
        val spark: SparkSession = SparkSession.builder().config(conf)
            .getOrCreate()

        //創(chuàng)建sqlcontext對象
        val sqlContext: SQLContext = spark.sqlContext
        //創(chuàng)建sparkContext
        val sc: SparkContext = spark.sparkContext

        //list-DataFrame

        //1.將list中的元素全部轉(zhuǎn)化為Row
        val RowList: List[Row] = stuList.map(item => {
            Row(item.name, item.birthday, item.province)
        })
        //2.構(gòu)建元數(shù)據(jù)
        val schema=StructType(List(
            StructField("name",DataTypes.StringType),
            StructField("birthday",DataTypes.StringType),
            StructField("province",DataTypes.StringType)
        ))
        //將scala的集合轉(zhuǎn)化為java集合
        val javaList = JavaConversions.seqAsJavaList(RowList)
        val stuDF = spark.createDataFrame(javaList,schema)
        stuDF.createTempView("student")
        //使用完整的sql語句進(jìn)行查詢,使用動態(tài)編程的方式,Dataset、dataFrame都可以
        val sql=
            """
              |select * from student
            """.stripMargin
        spark.sql(sql).show()

RDD--> DataFrame:

        //屏蔽多余的日志
        Logger.getLogger("org.apache.hadoop").setLevel(Level.WARN)
        Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
        Logger.getLogger("org.project-spark").setLevel(Level.WARN)
        //構(gòu)建編程入口
        val conf: SparkConf = new SparkConf()
        conf.setAppName("SparkSqlTest")
            .setMaster("local[2]")
            .set("spark.serializer","org.apache.spark.serializer.KryoSerializer")
            .registerKryoClasses(Array(classOf[Student]))
        val spark: SparkSession = SparkSession.builder().config(conf)
            .getOrCreate()

        //創(chuàng)建sqlcontext對象
        val sqlContext: SQLContext = spark.sqlContext
        //創(chuàng)建sparkContext
        val sc: SparkContext = spark.sparkContext

        //RDD-DataFrame

        //將RDD中的元素轉(zhuǎn)換為Row
        val RowRDD: RDD[Row] = sc.makeRDD(stuList).map(item => {
            Row(item.name, item.birthday, item.province)
        })

        //2.構(gòu)建元數(shù)據(jù)
        val schema=StructType(List(
            StructField("name",DataTypes.StringType),
            StructField("birthday",DataTypes.StringType),
            StructField("province",DataTypes.StringType)
        ))
        val stuDF = spark.createDataFrame(RowRDD,schema)
        stuDF.createTempView("student")
        //使用完整的sql語句進(jìn)行查詢,使用動態(tài)編程的方式,Dataset、dataFrame都可以
        val sql=
            """
              |select * from student
            """.stripMargin
        spark.sql(sql).show()

由于構(gòu)建DataFrame和構(gòu)建DataSet一模一樣,這里就不在演示

(2)spark SQL加載數(shù)據(jù)的方式

        //屏蔽多余的日志
        Logger.getLogger("org.apache.hadoop").setLevel(Level.WARN)
        Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
        Logger.getLogger("org.project-spark").setLevel(Level.WARN)
        //構(gòu)建編程入口
        val conf: SparkConf = new SparkConf()
        conf.setAppName("SparkSqlTest")
                .setMaster("local[2]")

        val spark: SparkSession = SparkSession.builder().config(conf)
                .getOrCreate()

        //創(chuàng)建sqlcontext對象
        val sqlContext: SQLContext = spark.sqlContext
        //創(chuàng)建sparkContext
        val sc: SparkContext = spark.sparkContext

        //早期版本加載:parquet文件
        sqlContext.load("hdfs://zzy/hello.parquet")
        //加載json數(shù)據(jù)
        sqlContext.read.json("hdfs://zzy/hello.json")
        //加載普通文件
        sqlContext.read.text("hdfs://zzy/hello.txt")
        //加載csv
        sqlContext.read.csv("hdfs://zy/hello.csv")
        //讀取jdbc的數(shù)據(jù)
        val url="jdbc:MySQL://localhost:3306/hello"
        val properties=new Properties()
        properties.setProperty("user","root")
        properties.setProperty("password","123456")
        val tableName="book"
        sqlContext.read.jdbc(url,tableName,properties)

(3)spark SQL數(shù)據(jù)落地的方式

        //屏蔽多余的日志
        Logger.getLogger("org.apache.hadoop").setLevel(Level.WARN)
        Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
        Logger.getLogger("org.project-spark").setLevel(Level.WARN)
        //構(gòu)建編程入口
        val conf: SparkConf = new SparkConf()
        conf.setAppName("SparkSqlTest")
                .setMaster("local[2]")

        val spark: SparkSession = SparkSession.builder().config(conf)
                .getOrCreate()

        //創(chuàng)建sqlcontext對象
        val sqlContext: SQLContext = spark.sqlContext
        //創(chuàng)建sparkContext
        val sc: SparkContext = spark.sparkContext
        val testFD: DataFrame = sqlContext.read.text("hdfs://zzy/hello.txt")

        //寫入到普通文件
        testFD.write.format("json") //以什么格式寫入
                .mode(SaveMode.Append)  //寫入方式
                .save("hdfs://zzy/hello.json")  //寫入的文件位置

        //寫入到數(shù)據(jù)庫
        val url="jdbc:mysql://localhost:3306/hello"
        val table_name="book"
        val prots=new Properties()
        prots.put("user","root")
        prots.put("password","123456")
        testFD.write.mode(SaveMode.Append).jdbc(url,table_name,prots)

當(dāng)前名稱:Spark-SQL的具體編程場景
分享地址:http://weahome.cn/article/jepico.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部