接著上一篇,將MySQL的數(shù)據(jù)導(dǎo)入kafka中
臨夏州網(wǎng)站建設(shè)公司成都創(chuàng)新互聯(lián),臨夏州網(wǎng)站設(shè)計制作,有大型網(wǎng)站制作公司豐富經(jīng)驗。已為臨夏州上1000家提供企業(yè)網(wǎng)站建設(shè)服務(wù)。企業(yè)網(wǎng)站搭建\成都外貿(mào)網(wǎng)站建設(shè)要多少錢,請找那個售后服務(wù)好的臨夏州做網(wǎng)站的公司定做!
public static void main(String[] arg) throws Exception {
TypeInformation[] fieldTypes = new TypeInformation[] { BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.STRING_TYPE_INFO };
String[] fieldNames = new String[] { "name", "address" };
RowTypeInfo rowTypeInfo = new RowTypeInfo(fieldTypes, fieldNames);
JDBCInputFormat jdbcInputFormat = JDBCInputFormat.buildJDBCInputFormat().setDrivername("com.mysql.jdbc.Driver")
.setDBUrl("jdbc:mysql://ip:3306/tablespace?characterEncoding=utf8")
.setUsername("user").setPassword("root")
.setQuery("select LOGIC_CODE, SHARE_LOG_CODE from table").setRowTypeInfo(rowTypeInfo).finish();
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSource s = env.createInput(jdbcInputFormat);
BatchTableEnvironment tableEnv = new BatchTableEnvironment(env, TableConfig.DEFAULT());
tableEnv.registerDataSet("t2", s);
Table tapiResult = tableEnv.scan("t2");
System.out.println("schema is:");
tapiResult.printSchema();
Table query = tableEnv.sqlQuery("select name, address from t2");
DataSet ds= tableEnv.toDataSet(query, Result.class);
DataSet temp=ds.map(new MapFunction() {
@Override
public String map(Result result) throws Exception {
String name = result.name;
String value = result.address;
return name+":->:"+value;
}
});
logger.info("read db end");
KafkaOutputFormat kafkaOutput = KafkaOutputFormat.buildKafkaOutputFormat()
.setBootstrapServers("ip:9092").setTopic("search_test_whk").setAcks("all").setBatchSize("1000")
.setBufferMemory("100000").setLingerMs("1").setRetries("2").finish();
temp.output(kafkaOutput);
logger.info("write kafka end");
env.execute("Flink add data source");
}