numpy和pandas是python中用于處理數(shù)據(jù)的兩個(gè)庫。
numpy介紹:
numpy用于處理array,且array中數(shù)據(jù)類型必須一致。下面以代碼備注的方式介紹。
網(wǎng)站的建設(shè)創(chuàng)新互聯(lián)專注網(wǎng)站定制,經(jīng)驗(yàn)豐富,不做模板,主營網(wǎng)站定制開發(fā).小程序定制開發(fā),H5頁面制作!給你煥然一新的設(shè)計(jì)體驗(yàn)!已為成都封陽臺等企業(yè)提供專業(yè)服務(wù)。
#START
import numpy as np
v=np.array([1,2,3,4,5,6,7,8]) //array中以list的方式展現(xiàn)
m=np.array([[1,2,3,4,5,6,7,8],
[8,7,6,5,4,3,2,1]])
h=np.array([[1,2,3,4,5,6,7,8],
[8,7,6,5,4,3,2,1],
[9,8,7,6,5,4,3,2]],dtype=float) //指定list中數(shù)據(jù)類型為float
print(v.type) //查看array類型
print(v.shape) //查看array模型
#print(np.shape(v))
print(v.size)
#print(np.size(v))
print(v.dtype)
#END
#START
import numpy as np
##如下是一個(gè)三行四列的array
#[1,2,3,4]
#[2,3,4,5]
#[3,4,5,6]
#shape(3,4)
a=np.array([[1,2,3,4],[2,3,4,5],[3,4,5,6]])
b=a[0:2,1:3] //array切分操作,對比list中的cut。修改b的話a也會變更。
h=np.array([[1,2],[3,4],[5,6]])
i=np.array(h[0,1],h[1,1],h[2,0]) //使用index方法脫離關(guān)系,即b變化a不變。
i[[0,0]]=888
print(i)
print(h)
c=np.zeros((2,20)) //生成2行20列的0
print(c)
d=np.ones((20,5)) //生成20行5列的1
print(d)
e=np.full((5,7),888) //生成5行7列的888
print(e)
f=np.eye(10) //Identify matrix(I)
print(f)
g=np.random.random((8,19)) //生成隨機(jī)array
print(g)
#END
#START
j=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
k=np.array([0,2,0,1])
l=j[np.arange(4),k] //j中前4行按照k中的數(shù)值提取列中元素
j[np.arange(4),k] += 100 //j中前4行按照k中的數(shù)值提取列中元素后再加100,返回j
print(j)
#END
#START
m=np.array([[1,2,3],[4,5,6],[7,8,9]])
print(m)
boolean_array_indexing =(m>5) //按照判斷條件將array轉(zhuǎn)換成布爾值
print(boolean_array_indexing)
print(m(m>5))
#END
#START
#array四則運(yùn)算
x=np.array([[1,2],[3,4]],dtype=np.float64)
y=np.array([[5,6],[7,8]],dtype=np.float64)
print(x+y)
print(np.add(x,y))
print(x-y)
print(np.subtract(x,y))
print(x*y)
print(np.multiply(x,y))
print(x/y)
print(np.divide(x,y))
print(np.sqrt(x))
print(x.dot(y))
print(np.dot(x,y))
i=np.array([3,0])
j=np.array([0,4])
print(i.dot(j))
print(np.dot(i.j))
x=np.array([[1,2],[3,4]])
print(x)
print(np.sum(x))
print(np.sum(x,axis=1))
print(x,T) //變形
#END
#START
x=np,array([[1,2],[3,4],[5,6]])
y=np.array([0,1])
print(x+y) //broadcasting會自動(dòng)補(bǔ)齊y中缺少元素
#END
#START
x=np,array([[1,2,3],[3,4,6],[5,6,7],[7,8,9]])
print(x[1,0:2])
y=np.array([1,0,1])
z=np.empty_like(x) //生成一個(gè)和x格式一致的array
print(z)
for i in range(4):
z[i,:]=x[i,:]+y
#END
pandas介紹:
用于處理.csv文件
import pandas as pd
pd.set_option('display.max_rows',1000) //用于設(shè)置展示的行數(shù)和列數(shù)
pd.set_option('display.max_columns',1000)
user_input_cols=['','','','','',''] //用于自定義每一列的名稱
data_frame=pd.read_csv('diabetes.csv',index_col=0,header=None,
name=user_input_cols) //讀取文件
print(df.head()) //展示文件的前幾行
**********************
#dataframe //數(shù)據(jù)域
#series //列
df=pd.read_csv('diabetes.csv',index_col=0,header=None,
name=user_input_cols)
print(df['series_name']) //展示列名稱
#series相加
print(df.series_name1+df.series_name2)
print(df.series_name1+','+df.series_name2)
new_series=df.series_name1+','+df.series_name2
df['series_name1+series_name2']=new_series
print(df.dtypes)
**********************
#查看數(shù)據(jù)特征
print(df.describe())