真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

Python基于FIR如何實(shí)現(xiàn)Hilbert濾波器求信號包絡(luò)-創(chuàng)新互聯(lián)

這篇文章將為大家詳細(xì)講解有關(guān)Python基于FIR如何實(shí)現(xiàn)Hilbert濾波器求信號包絡(luò),小編覺得挺實(shí)用的,因此分享給大家做個參考,希望大家閱讀完這篇文章后可以有所收獲。

創(chuàng)新互聯(lián)主要從事成都網(wǎng)站建設(shè)、成都網(wǎng)站設(shè)計、網(wǎng)頁設(shè)計、企業(yè)做網(wǎng)站、公司建網(wǎng)站等業(yè)務(wù)。立足成都服務(wù)桑珠孜,10余年網(wǎng)站建設(shè)經(jīng)驗(yàn),價格優(yōu)惠、服務(wù)專業(yè),歡迎來電咨詢建站服務(wù):18982081108

在通信領(lǐng)域,可以通過希爾伯特變換求解解析信號,進(jìn)而求解窄帶信號的包絡(luò)。

實(shí)現(xiàn)希爾伯特變換有兩種方法,一種是對信號做FFT,單后只保留單邊頻譜,在做IFFT,我們稱之為頻域方法;另一種是基于FIR根據(jù)傳遞函數(shù)設(shè)計一個希爾伯特濾波器,我們稱之為時域方法。

# -*- coding:utf8 -*-
# @TIME   : 2019/4/11 18:30
# @Author  : SuHao
# @File   : hilberfilter.py


import scipy.signal as signal
import numpy as np
import librosa as lib
import matplotlib.pyplot as plt
import time
# from preprocess_filter import *

# 讀取音頻文件
ex = '..\\..\\數(shù)據(jù)集2\\pre2012\\bflute\\BassFlute.ff.C5B5.aiff'
time_series, fs = lib.load(ex, sr=None, mono=True, res_type='kaiser_best')

# 生成一個chirp信號
# duration = 2.0
# fs = 400.0
# samples = int(fs*duration)
# t = np.arange(samples) / fs
# time_series = signal.chirp(t, 20.0, t[-1], 100.0)
# time_series *= (1.0 + 0.5 * np.sin(2.0*np.pi*3.0*t) )

def hilbert_filter(x, fs, order=201, pic=None):
  '''
  :param x: 輸入信號
  :param fs: 信號采樣頻率
  :param order: 希爾伯特濾波器階數(shù)
  :param pic: 是否繪圖,bool
  :return: 包絡(luò)信號
  '''
  co = [2*np.sin(np.pi*n/2)**2/np.pi/n for n in range(1, order+1)]
  co1 = [2*np.sin(np.pi*n/2)**2/np.pi/n for n in range(-order, 0)]
  co = co1+[0]+ co
  # out = signal.filtfilt(b=co, a=1, x=x, padlen=int((order-1)/2))
  out = signal.convolve(x, co, mode='same', method='direct')
  envolope = np.sqrt(out**2 + x**2)
  if pic is not None:
    w, h = signal.freqz(b=co, a=1, worN=2048, whole=False, plot=None, fs=2*np.pi)
    fig, ax1 = plt.subplots()
    ax1.set_title('hilbert filter frequency response')
    ax1.plot(w, 20 * np.log10(abs(h)), 'b')
    ax1.set_ylabel('Amplitude [dB]', color='b')
    ax1.set_xlabel('Frequency [rad/sample]')
    ax2 = ax1.twinx()
    angles = np.unwrap(np.angle(h))
    ax2.plot(w, angles, 'g')
    ax2.set_ylabel('Angle (radians)', color='g')
    ax2.grid()
    ax2.axis('tight')
    # plt.savefig(pic + 'hilbert_filter.jpg')
    plt.show()
    # plt.clf()
    # plt.close()
  return envolope

start = time.time()
env0 = hilbert_filter(time_series, fs, 81, pic=True)
end = time.time()
a = end-start
print(a)

plt.figure()
ax1 = plt.subplot(211)
plt.plot(time_series)
ax2 = plt.subplot(212)
plt.plot(env0)
plt.xlabel('time')
plt.ylabel('mag')
plt.title('envolope of music by FIR \n time:%.3f'%a)
plt.tight_layout()

start = time.time()
# 使用scipy庫函數(shù)實(shí)現(xiàn)希爾伯特變換
env = np.abs(signal.hilbert(time_series))
end = time.time()
a = end-start
print(a)


plt.figure()
ax1 = plt.subplot(211)
plt.plot(time_series)
ax2 = plt.subplot(212)
plt.plot(env)
plt.xlabel('time')
plt.ylabel('mag')
plt.title('envolope of music by scipy \n time:%.3f'%a)
plt.tight_layout()
plt.show()

使用chirp信號對兩種方法進(jìn)行比較

FIR濾波器的頻率響應(yīng)

Python基于FIR如何實(shí)現(xiàn)Hilbert濾波器求信號包絡(luò)

使用音頻信號對兩種方法進(jìn)行比較

由于音頻信號時間較長,采樣率較高,因此離散信號序列很長。使用頻域方法做FFT和IFFT要耗費(fèi)比較長的時間;然而使用時域方法只是和濾波器沖擊響應(yīng)做卷積,因此運(yùn)算速度比較快。結(jié)果對比如下:

頻域方法結(jié)果

Python基于FIR如何實(shí)現(xiàn)Hilbert濾波器求信號包絡(luò)

時域方法結(jié)果

Python基于FIR如何實(shí)現(xiàn)Hilbert濾波器求信號包絡(luò)

由此看出,時域方法耗費(fèi)時間要遠(yuǎn)小于頻域方法。

python主要應(yīng)用領(lǐng)域有哪些

1、云計算,典型應(yīng)用OpenStack。2、WEB前端開發(fā),眾多大型網(wǎng)站均為Python開發(fā)。3.人工智能應(yīng)用,基于大數(shù)據(jù)分析和深度學(xué)習(xí)而發(fā)展出來的人工智能本質(zhì)上已經(jīng)無法離開python。4、系統(tǒng)運(yùn)維工程項目,自動化運(yùn)維的標(biāo)配就是python+Django/flask。5、金融理財分析,量化交易,金融分析。6、大數(shù)據(jù)分析。

關(guān)于“Python基于FIR如何實(shí)現(xiàn)Hilbert濾波器求信號包絡(luò)”這篇文章就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,使各位可以學(xué)到更多知識,如果覺得文章不錯,請把它分享出去讓更多的人看到。

另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國服務(wù)器、虛擬主機(jī)、免備案服務(wù)器”等云主機(jī)租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務(wù)可用性高、性價比高”等特點(diǎn)與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場景需求。


網(wǎng)頁標(biāo)題:Python基于FIR如何實(shí)現(xiàn)Hilbert濾波器求信號包絡(luò)-創(chuàng)新互聯(lián)
鏈接URL:http://weahome.cn/article/jhceg.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部