Kafka消費與心跳機制如何理解,相信很多沒有經(jīng)驗的人對此束手無策,為此本文總結(jié)了問題出現(xiàn)的原因和解決方法,通過這篇文章希望你能解決這個問題。
十余年專注成都網(wǎng)站制作,成都企業(yè)網(wǎng)站建設(shè),個人網(wǎng)站制作服務(wù),為大家分享網(wǎng)站制作知識、方案,網(wǎng)站設(shè)計流程、步驟,成功服務(wù)上千家企業(yè)。為您提供網(wǎng)站建設(shè),網(wǎng)站制作,網(wǎng)頁設(shè)計及定制高端網(wǎng)站建設(shè)服務(wù),專注于成都企業(yè)網(wǎng)站建設(shè),高端網(wǎng)頁制作,對成都柔性防護網(wǎng)等多個方面,擁有多年設(shè)計經(jīng)驗。
導(dǎo)讀kafka是一個分布式,分區(qū)的,多副本的,多訂閱者的消息發(fā)布訂閱系統(tǒng)(分布式MQ系統(tǒng)),可以用于搜索日志,監(jiān)控日志,訪問日志等。kafka是一個分布式,分區(qū)的,多副本的,多訂閱者的消息發(fā)布訂閱系統(tǒng)(分布式MQ系統(tǒng)),可以用于搜索日志,監(jiān)控日志,訪問日志等。今天小編來領(lǐng)大家一起來學(xué)習(xí)一下Kafka消費與心跳機制。
1、Kafka消費
首先,我們來看看消費。Kafka提供了非常簡單的消費API,使用者只需初始化Kafka的Broker Server地址,然后實例化KafkaConsumer類即可拿到Topic中的數(shù)據(jù)。一個簡單的Kafka消費實例代碼如下所示:
public class JConsumerSubscribe extends Thread { public static void main(String[] args) { JConsumerSubscribe jconsumer = new JConsumerSubscribe(); jconsumer.start(); } /** 初始化Kafka集群信息. */ private Properties configure() { Properties props = new Properties(); props.put("bootstrap.servers", "dn1:9092,dn2:9092,dn3:9092");// 指定Kafka集群地址 props.put("group.id", "ke");// 指定消費者組 props.put("enable.auto.commit", "true");// 開啟自動提交 props.put("auto.commit.interval.ms", "1000");// 自動提交的時間間隔 // 反序列化消息主鍵 props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); // 反序列化消費記錄 props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); return props; } /** 實現(xiàn)一個單線程消費者. */ @Override public void run() { // 創(chuàng)建一個消費者實例對象 KafkaConsumerconsumer = new KafkaConsumer<>(configure()); // 訂閱消費主題集合 consumer.subscribe(Arrays.asList("test_kafka_topic")); // 實時消費標識 boolean flag = true; while (flag) { // 獲取主題消息數(shù)據(jù) ConsumerRecords records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord record : records) // 循環(huán)打印消息記錄 System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value()); } // 出現(xiàn)異常關(guān)閉消費者對象 consumer.close(); }}
上述代碼我們就可以非常便捷地拿到Topic中的數(shù)據(jù)。但是,當我們調(diào)用poll方法拉取數(shù)據(jù)的時候,Kafka Broker Server做了那些事情。接下來,我們可以去看看源代碼的實現(xiàn)細節(jié)。核心代碼如下:
org.apache.kafka.clients.consumer.KafkaConsumer
private ConsumerRecordspoll(final long timeoutMs, final boolean includeMetadataInTimeout) { acquireAndEnsureOpen(); try { if (timeoutMs < 0) throw new IllegalArgumentException("Timeout must not be negative"); if (this.subscriptions.hasNoSubscriptionOrUserAssignment()) { throw new IllegalStateException("Consumer is not subscribed to any topics or assigned any partitions"); } // poll for new data until the timeout expires long elapsedTime = 0L; do { client.maybeTriggerWakeup(); final long metadataEnd; if (includeMetadataInTimeout) { final long metadataStart = time.milliseconds(); if (!updateAssignmentMetadataIfNeeded(remainingTimeAtLeastZero(timeoutMs, elapsedTime))) { return ConsumerRecords.empty(); } metadataEnd = time.milliseconds(); elapsedTime += metadataEnd - metadataStart; } else { while (!updateAssignmentMetadataIfNeeded(Long.MAX_VALUE)) { log.warn("Still waiting for metadata"); } metadataEnd = time.milliseconds(); } final Map >> records = pollForFetches(remainingTimeAtLeastZero(timeoutMs, elapsedTime)); if (!records.isEmpty()) { // before returning the fetched records, we can send off the next round of fetches // and avoid block waiting for their responses to enable pipelining while the user // is handling the fetched records. // // NOTE: since the consumed position has already been updated, we must not allow // wakeups or any other errors to be triggered prior to returning the fetched records. if (fetcher.sendFetches() > 0 || client.hasPendingRequests()) { client.pollNoWakeup(); } return this.interceptors.onConsume(new ConsumerRecords<>(records)); } final long fetchEnd = time.milliseconds(); elapsedTime += fetchEnd - metadataEnd; } while (elapsedTime < timeoutMs); return ConsumerRecords.empty(); } finally { release(); } }
上述代碼中有個方法pollForFetches,它的實現(xiàn)邏輯如下:
private Map>> pollForFetches(final long timeoutMs) { final long startMs = time.milliseconds(); long pollTimeout = Math.min(coordinator.timeToNextPoll(startMs), timeoutMs); // if data is available already, return it immediately final Map >> records = fetcher.fetchedRecords(); if (!records.isEmpty()) { return records; } // send any new fetches (won't resend pending fetches) fetcher.sendFetches(); // We do not want to be stuck blocking in poll if we are missing some positions // since the offset lookup may be backing off after a failure // NOTE: the use of cachedSubscriptionHashAllFetchPositions means we MUST call // updateAssignmentMetadataIfNeeded before this method. if (!cachedSubscriptionHashAllFetchPositions && pollTimeout > retryBackoffMs) { pollTimeout = retryBackoffMs; } client.poll(pollTimeout, startMs, () -> { // since a fetch might be completed by the background thread, we need this poll condition // to ensure that we do not block unnecessarily in poll() return !fetcher.hasCompletedFetches(); }); // after the long poll, we should check whether the group needs to rebalance // prior to returning data so that the group can stabilize faster if (coordinator.rejoinNeededOrPending()) { return Collections.emptyMap(); } return fetcher.fetchedRecords(); }
上述代碼中加粗的位置,我們可以看出每次消費者客戶端拉取數(shù)據(jù)時,通過poll方法,先調(diào)用fetcher中的fetchedRecords函數(shù),如果獲取不到數(shù)據(jù),就會發(fā)起一個新的sendFetches請求。而在消費數(shù)據(jù)的時候,每個批次從Kafka Broker Server中拉取數(shù)據(jù)是有最大數(shù)據(jù)量限制,默認是500條,由屬性(max.poll.records)控制,可以在客戶端中設(shè)置該屬性值來調(diào)整我們消費時每次拉取數(shù)據(jù)的量。
提示:這里需要注意的是,max.poll.records返回的是一個poll請求的數(shù)據(jù)總和,與多少個分區(qū)無關(guān)。因此,每次消費從所有分區(qū)中拉取Topic的數(shù)據(jù)的總條數(shù)不會超過max.poll.records所設(shè)置的值。
而在Fetcher的類中,在sendFetches方法中有限制拉取數(shù)據(jù)容量的限制,由屬性(max.partition.fetch.bytes),默認1MB??赡軙羞@樣一個場景,當滿足max.partition.fetch.bytes限制條件,如果需要Fetch出10000條記錄,每次默認500條,那么我們需要執(zhí)行20次才能將這一次通過網(wǎng)絡(luò)發(fā)起的請求全部Fetch完畢。
這里,可能有同學(xué)有疑問,我們不能將默認的max.poll.records屬性值調(diào)到10000嗎?可以調(diào),但是還有個屬性需要一起配合才可以,這個就是每次poll的超時時間(Duration.ofMillis(100)),這里需要根據(jù)你的實際每條數(shù)據(jù)的容量大小來確定設(shè)置超時時間,如果你將最大值調(diào)到10000,當你每條記錄的容量很大時,超時時間還是100ms,那么可能拉取的數(shù)據(jù)少于10000條。
而這里,還有另外一個需要注意的事情,就是會話超時的問題。session.timeout.ms默認是10s,group.min.session.timeout.ms默認是6s,group.max.session.timeout.ms默認是30min。當你在處理消費的業(yè)務(wù)邏輯的時候,如果在10s內(nèi)沒有處理完,那么消費者客戶端就會與Kafka Broker Server斷開,消費掉的數(shù)據(jù),產(chǎn)生的offset就沒法提交給Kafka,因為Kafka Broker Server此時認為該消費者程序已經(jīng)斷開,而即使你設(shè)置了自動提交屬性,或者設(shè)置auto.offset.reset屬性,你消費的時候還是會出現(xiàn)重復(fù)消費的情況,這就是因為session.timeout.ms超時的原因?qū)е碌摹?/p>
2、心跳機制
上面在末尾的時候,說到會話超時的情況導(dǎo)致消息重復(fù)消費,為什么會有超時?有同學(xué)會有這樣的疑問,我的消費者線程明明是啟動的,也沒有退出,為啥消費不到Kafka的消息呢?消費者組也查不到我的ConsumerGroupID呢?這就有可能是超時導(dǎo)致的,而Kafka是通過心跳機制來控制超時,心跳機制對于消費者客戶端來說是無感的,它是一個異步線程,當我們啟動一個消費者實例時,心跳線程就開始工作了。
在org.apache.kafka.clients.consumer.internals.AbstractCoordinator中會啟動一個HeartbeatThread線程來定時發(fā)送心跳和檢測消費者的狀態(tài)。每個消費者都有個org.apache.kafka.clients.consumer.internals.ConsumerCoordinator,而每個ConsumerCoordinator都會啟動一個HeartbeatThread線程來維護心跳,心跳信息存放在org.apache.kafka.clients.consumer.internals.Heartbeat中,聲明的Schema如下所示:
private final int sessionTimeoutMs; private final int heartbeatIntervalMs; private final int maxPollIntervalMs; private final long retryBackoffMs; private volatile long lastHeartbeatSend; private long lastHeartbeatReceive; private long lastSessionReset; private long lastPoll; private boolean heartbeatFailed;
心跳線程中的run方法實現(xiàn)代碼如下:
public void run() { try { log.debug("Heartbeat thread started"); while (true) { synchronized (AbstractCoordinator.this) { if (closed) return; if (!enabled) { AbstractCoordinator.this.wait(); continue; } if (state != MemberState.STABLE) { // the group is not stable (perhaps because we left the group or because the coordinator // kicked us out), so disable heartbeats and wait for the main thread to rejoin. disable(); continue; } client.pollNoWakeup(); long now = time.milliseconds(); if (coordinatorUnknown()) { if (findCoordinatorFuture != null || lookupCoordinator().failed()) // the immediate future check ensures that we backoff properly in the case that no // brokers are available to connect to. AbstractCoordinator.this.wait(retryBackoffMs); } else if (heartbeat.sessionTimeoutExpired(now)) { // the session timeout has expired without seeing a successful heartbeat, so we should // probably make sure the coordinator is still healthy. markCoordinatorUnknown(); } else if (heartbeat.pollTimeoutExpired(now)) { // the poll timeout has expired, which means that the foreground thread has stalled // in between calls to poll(), so we explicitly leave the group. maybeLeaveGroup(); } else if (!heartbeat.shouldHeartbeat(now)) { // poll again after waiting for the retry backoff in case the heartbeat failed or the // coordinator disconnected AbstractCoordinator.this.wait(retryBackoffMs); } else { heartbeat.sentHeartbeat(now); sendHeartbeatRequest().addListener(new RequestFutureListener() { @Override public void onSuccess(Void value) { synchronized (AbstractCoordinator.this) { heartbeat.receiveHeartbeat(time.milliseconds()); } } @Override public void onFailure(RuntimeException e) { synchronized (AbstractCoordinator.this) { if (e instanceof RebalanceInProgressException) { // it is valid to continue heartbeating while the group is rebalancing. This // ensures that the coordinator keeps the member in the group for as long // as the duration of the rebalance timeout. If we stop sending heartbeats, // however, then the session timeout may expire before we can rejoin. heartbeat.receiveHeartbeat(time.milliseconds()); } else { heartbeat.failHeartbeat(); // wake up the thread if it's sleeping to reschedule the heartbeat AbstractCoordinator.this.notify(); } } } }); } } } } catch (AuthenticationException e) { log.error("An authentication error occurred in the heartbeat thread", e); this.failed.set(e); } catch (GroupAuthorizationException e) { log.error("A group authorization error occurred in the heartbeat thread", e); this.failed.set(e); } catch (InterruptedException | InterruptException e) { Thread.interrupted(); log.error("Unexpected interrupt received in heartbeat thread", e); this.failed.set(new RuntimeException(e)); } catch (Throwable e) { log.error("Heartbeat thread failed due to unexpected error", e); if (e instanceof RuntimeException) this.failed.set((RuntimeException) e); else this.failed.set(new RuntimeException(e)); } finally { log.debug("Heartbeat thread has closed"); } }
在心跳線程中這里面包含兩個最重要的超時函數(shù),它們是sessionTimeoutExpired和pollTimeoutExpired。
public boolean sessionTimeoutExpired(long now) { return now - Math.max(lastSessionReset, lastHeartbeatReceive) > sessionTimeoutMs; }public boolean pollTimeoutExpired(long now) { return now - lastPoll > maxPollIntervalMs; }
2.1、sessionTimeoutExpired
如果是sessionTimeout超時,則會被標記為當前協(xié)調(diào)器處理斷開,此時,會將消費者移除,重新分配分區(qū)和消費者的對應(yīng)關(guān)系。在Kafka Broker Server中,Consumer Group定義了5種(如果算上Unknown,應(yīng)該是6種狀態(tài))狀態(tài),org.apache.kafka.common.ConsumerGroupState,如下圖所示:
2.2、pollTimeoutExpired
如果觸發(fā)了poll超時,此時消費者客戶端會退出ConsumerGroup,當再次poll的時候,會重新加入到ConsumerGroup,觸發(fā)RebalanceGroup。而KafkaConsumer Client是不會幫我們重復(fù)poll的,需要我們自己在實現(xiàn)的消費邏輯中不停地調(diào)用poll方法。
3.分區(qū)與消費線程
關(guān)于消費分區(qū)與消費線程的對應(yīng)關(guān)系,理論上消費線程數(shù)應(yīng)該小于等于分區(qū)數(shù)。之前是有這樣一種觀點,一個消費線程對應(yīng)一個分區(qū),當消費線程等于分區(qū)數(shù)是最大化線程的利用率。直接使用KafkaConsumer Client實例,這樣使用確實沒有什么問題。但是,如果我們有富裕的CPU,其實還可以使用大于分區(qū)數(shù)的線程,來提升消費能力,這就需要我們對KafkaConsumer Client實例進行改造,實現(xiàn)消費策略預(yù)計算,利用額外的CPU開啟更多的線程,來實現(xiàn)消費任務(wù)分片。
看完上述內(nèi)容,你們掌握Kafka消費與心跳機制如何理解的方法了嗎?如果還想學(xué)到更多技能或想了解更多相關(guān)內(nèi)容,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,感謝各位的閱讀!