真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

初識Spark入門

1. Spark簡介

為企業(yè)提供網(wǎng)站設(shè)計(jì)制作、網(wǎng)站制作、網(wǎng)站優(yōu)化、網(wǎng)絡(luò)營銷推廣、競價托管、品牌運(yùn)營等營銷獲客服務(wù)。成都創(chuàng)新互聯(lián)公司擁有網(wǎng)絡(luò)營銷運(yùn)營團(tuán)隊(duì),以豐富的互聯(lián)網(wǎng)營銷經(jīng)驗(yàn)助力企業(yè)精準(zhǔn)獲客,真正落地解決中小企業(yè)營銷獲客難題,做到“讓獲客更簡單”。自創(chuàng)立至今,成功用技術(shù)實(shí)力解決了企業(yè)“網(wǎng)站建設(shè)、網(wǎng)絡(luò)品牌塑造、網(wǎng)絡(luò)營銷”三大難題,同時降低了營銷成本,提高了有效客戶轉(zhuǎn)化率,獲得了眾多企業(yè)客戶的高度認(rèn)可!

  • 2009年,Spark誕生于伯克利大學(xué)的AMPLab實(shí)驗(yàn)室。最出Spark只是一個實(shí)驗(yàn)性的項(xiàng)目,代碼量非常少,屬于輕量級的框架。
  • 2010年,伯克利大學(xué)正式開源了Spark項(xiàng)目。
  • 2013年6月,Spark成為了Apache基金會下的項(xiàng)目,進(jìn)入高速發(fā)展期。第三方開發(fā)者貢獻(xiàn)了大量的代碼,活躍度非常高
  • 2014年2月,Spark以飛快的速度稱為了Apache的頂級項(xiàng)目,同時大數(shù)據(jù)公司Cloudera宣稱加大Spark框架的投入來取代MapReduce
  • 2014年4月,大數(shù)據(jù)公司MapR投入Spark陣營, Apache Mahout放棄MapReduce,將使用Spark作為計(jì)算引擎。
  • 2014年5月,Spark 1.0.0 發(fā)布。
  • 2015年~,Spark在國內(nèi)IT行業(yè)變得愈發(fā)火爆,越來越多的公司開始重點(diǎn)部署或者使用Spark來替代MR2、Hive、Storm等傳統(tǒng)的大數(shù)據(jù)并行計(jì)算框架

2. Spark是什么?

  • Apache Spark™ is a unified analytics engine for large-scale data processing.
  • 大規(guī)模數(shù)據(jù)集的統(tǒng)一分析引擎
  • Spark是一個基于內(nèi)存的通用并行計(jì)算框架,目的是讓數(shù)據(jù)分析更加快速
  • Spark包含了大數(shù)據(jù)領(lǐng)域常見的各種計(jì)算框架
    • spark core(離線計(jì)算)
    • sparksql(交互式查詢)
    • spark streaming(實(shí)時計(jì)算)
    • Spark MLlib (機(jī)器學(xué)習(xí))
    • Spark GraphX (圖計(jì)算)

3. Spark能代替hadoop嗎?

​ 不完全對

​ 因?yàn)槲覀冎荒苁褂胹park core代替mr做離線計(jì)算,數(shù)據(jù)的存儲還是要依賴hdfs

​ Spark+Hadoop的組合,才是未來大數(shù)據(jù)領(lǐng)域最熱門的組合,也是最有前景的組合!​

4. Spark的特點(diǎn)

速度

  • 內(nèi)存計(jì)算在速度上要比mr快100倍以上
  • 磁盤計(jì)算在速度上要比mr快10倍以上

容易使用

  • 提供了java scala python R語言的api接口

一站式解決方案

  • spark core(離線計(jì)算)
  • spark sql(交互式查詢)
  • spark streaming(實(shí)時計(jì)算)
  • .....

可以運(yùn)行在任意的平臺

  • yarn
  • Mesos
  • standalone

5. Spark的缺點(diǎn)

JVM的內(nèi)存overhead太大,1G的數(shù)據(jù)通常需要消耗5G的內(nèi)存 (Project Tungsten 正試圖解決這個問題 )

不同的spark app之間缺乏有效的共享內(nèi)存機(jī)制(Project Tachyon 在試圖引入分布式的內(nèi)存管理,這樣不同的spark app可以共享緩存的數(shù)據(jù))

6. Spark vs MR

6.1 mr的局限性

  • 抽象層次低,需要手工編寫代碼來完成,使用上難以上手
  • 只提供兩個操作,Map和Reduce,表達(dá)力欠缺
  • 一個Job只有Map和Reduce兩個階段(Phase), 復(fù)雜的計(jì)算需要大量的Job完成,Job之間的依賴關(guān)系是由開發(fā)者自己管理的
  • 中間結(jié)果 (reduce的輸出結(jié)果) 也放在HDFS文件系統(tǒng)中
  • 延遲高,只適用Batch數(shù)據(jù)處理,對于交互式數(shù)據(jù)處理,實(shí)時數(shù)據(jù)處理的支持不夠
  • 對于迭代式數(shù)據(jù)處理性能比較差

6.2 Spark解決了mr中的那些問題?

抽象層次低,需要手工編寫代碼來完成,使用上難以上手

  • 通過spark中的RDD(Resilient distributed datasets)來進(jìn)行抽象

只提供兩個操作,Map和Reduce,表達(dá)力欠缺

  • 在spark中提供了多種算子

一個Job只有Map和Reduce兩個階段

  • 在spark中可以有多個階段(stage)

中間結(jié)果也放在HDFS文件系統(tǒng)中(速度慢)

  • 中間結(jié)果放在內(nèi)存中,內(nèi)存放不下了會寫入本地磁盤,而不是HDFS

延遲高,只適用Batch數(shù)據(jù)處理,對于交互式數(shù)據(jù)處理,實(shí)時數(shù)據(jù)處理的支持不夠

  • sparksql和sparkstreaming解決了上面問題

對于迭代式數(shù)據(jù)處理性能比較差

  • 通過在內(nèi)存中緩存數(shù)據(jù),提高迭代式計(jì)算的性能

==因此,Hadoop MapReduce會被新一代的大數(shù)據(jù)處理平臺替代是技術(shù)發(fā)展的趨勢,而在新一代的大數(shù)據(jù)處理平臺中,Spark目前得到了最廣泛的認(rèn)可和支持==

7. Spark的版本

  • spark1.6.3 : scala的版本2.10.5
  • spark2.2.0 : scala的版本2.11.8(新項(xiàng)目建議使用spark2.x的版本)
  • hadoop2.7.5

8. Spark單機(jī)版的安裝

準(zhǔn)備安裝包spark-2.2.0-bin-hadoop2.7.tgz

tar -zxvf spark-2.2.0-bin-hadoop2.7.tgz -C /opt/
mv spark-2.2.0-bin-hadoop2.7/ spark

修改spark-env.sh

export JAVA_HOME=/opt/jdk
export SPARK_MASTER_IP=uplooking01
export SPARK_MASTER_PORT=7077
export SPARK_WORKER_CORES=4
export SPARK_WORKER_INSTANCES=1
export SPARK_WORKER_MEMORY=2g
export HADOOP_CONF_DIR=/opt/hadoop/etc/hadoop

配置環(huán)境變量

#配置Spark的環(huán)境變量
export SPARK_HOME=/opt/spark
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin

啟動單機(jī)版spark

start-all-spark.sh

查看啟動

http://uplooking01:8080

9. Spark分布式集群的安裝

配置spark-env.sh

[root@uplooking01 /opt/spark/conf] 
  export JAVA_HOME=/opt/jdk
  #配置master的主機(jī)
  export SPARK_MASTER_IP=uplooking01
  #配置master主機(jī)通信的端口
  export SPARK_MASTER_PORT=7077
  #配置spark在每個worker中使用的cpu核數(shù)
  export SPARK_WORKER_CORES=4
  #配置每個主機(jī)有一個worker
  export SPARK_WORKER_INSTANCES=1
  #worker的使用內(nèi)存是2gb
  export SPARK_WORKER_MEMORY=2g
  #hadoop的配置文件中的目錄
  export HADOOP_CONF_DIR=/opt/hadoop/etc/hadoop

配置slaves

[root@uplooking01 /opt/spark/conf]
  uplooking03
  uplooking04
  uplooking05

分發(fā)spark

[root@uplooking01 /opt/spark/conf] 
  scp -r /opt/spark uplooking02:/opt/
  scp -r /opt/spark uplooking03:/opt/
  scp -r /opt/spark uplooking04:/opt/
  scp -r /opt/spark uplooking05:/opt/

分發(fā)uplooking01上配置的環(huán)境變量

[root@uplooking01 /] 
  scp -r /etc/profile uplooking02:/etc/
  scp -r /etc/profile uplooking03:/etc/
  scp -r /etc/profile uplooking04:/etc/
  scp -r /etc/profile uplooking05:/etc/

啟動spark

[root@uplooking01 /] 
 start-all-spark.sh

10. Spark高可用集群

先停止正在運(yùn)行的spark集群

修改spark-env.sh

#注釋以下這兩行內(nèi)容
#export SPARK_MASTER_IP=uplooking01
#export SPARK_MASTER_PORT=7077

添加內(nèi)容

export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=uplooking03:2181,uplooking04:2181,uplooking05:2181 -Dspark.deploy.zookeeper.dir=/spark"

分發(fā)修改的[配置

scp /opt/spark/conf/spark-env.sh uplooking02:/opt/spark/conf
scp /opt/spark/conf/spark-env.sh uplooking03:/opt/spark/conf
scp /opt/spark/conf/spark-env.sh uplooking04:/opt/spark/conf
scp /opt/spark/conf/spark-env.sh uplooking05:/opt/spark/conf

啟動集群

[root@uplooking01 /]
 start-all-spark.sh
[root@uplooking02 /]
 start-master.sh

11. 第一個Spark-Shell程序

spark-shell --master spark://uplooking01:7077 
#spark-shell可以在啟動時指定spark-shell這個application使用的資源(總核數(shù),每個work上使用的內(nèi)存)
spark-shell --master spark://uplooking01:7077 --total-executor-cores 6 --executor-memory 1g

#如果不指定 默認(rèn)使用每個worker上全部的核數(shù),和每個worker上的1g內(nèi)存
sc.textFile("hdfs://ns1/sparktest/").flatMap(_.split(",")).map((_,1)).reduceByKey(_+_).collect

12. Spark中的角色

Master

  • 負(fù)責(zé)接收提交的作業(yè)的請求
  • master負(fù)責(zé)調(diào)度資源(在woker中啟動CoarseGrainedExecutorBackend)

Worker

  • worker中的executor負(fù)責(zé)執(zhí)行task

Spark-Submitter ===> Driver

  • 提交spark應(yīng)用程序給master

13. Spark提交作業(yè)的大體流程

初識Spark入門

以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持創(chuàng)新互聯(lián)。


網(wǎng)頁名稱:初識Spark入門
本文地址:http://weahome.cn/article/jhshpd.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部