真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

TensorFlow實(shí)現(xiàn)AutoEncoder自編碼器-創(chuàng)新互聯(lián)

一、概述

成都創(chuàng)新互聯(lián)專注于四子王企業(yè)網(wǎng)站建設(shè),響應(yīng)式網(wǎng)站建設(shè),商城網(wǎng)站建設(shè)。四子王網(wǎng)站建設(shè)公司,為四子王等地區(qū)提供建站服務(wù)。全流程按需定制,專業(yè)設(shè)計(jì),全程項(xiàng)目跟蹤,成都創(chuàng)新互聯(lián)專業(yè)和態(tài)度為您提供的服務(wù)

AutoEncoder大致是一個(gè)將數(shù)據(jù)的高維特征進(jìn)行壓縮降維編碼,再經(jīng)過相反的解碼過程的一種學(xué)習(xí)方法。學(xué)習(xí)過程中通過解碼得到的最終結(jié)果與原數(shù)據(jù)進(jìn)行比較,通過修正權(quán)重偏置參數(shù)降低損失函數(shù),不斷提高對(duì)原數(shù)據(jù)的復(fù)原能力。學(xué)習(xí)完成后,前半段的編碼過程得到結(jié)果即可代表原數(shù)據(jù)的低維“特征值”。通過學(xué)習(xí)得到的自編碼器模型可以實(shí)現(xiàn)將高維數(shù)據(jù)壓縮至所期望的維度,原理與PCA相似。

二、模型實(shí)現(xiàn)

1. AutoEncoder

首先在MNIST數(shù)據(jù)集上,實(shí)現(xiàn)特征壓縮和特征解壓并可視化比較解壓后的數(shù)據(jù)與原數(shù)據(jù)的對(duì)照。

先看代碼:

import tensorflow as tf 
import numpy as np 
import matplotlib.pyplot as plt 
 
# 導(dǎo)入MNIST數(shù)據(jù) 
from tensorflow.examples.tutorials.mnist import input_data 
mnist = input_data.read_data_sets("MNIST_data/", one_hot=False) 
 
learning_rate = 0.01 
training_epochs = 10 
batch_size = 256 
display_step = 1 
examples_to_show = 10 
n_input = 784 
 
# tf Graph input (only pictures) 
X = tf.placeholder("float", [None, n_input]) 
 
# 用字典的方式存儲(chǔ)各隱藏層的參數(shù) 
n_hidden_1 = 256 # 第一編碼層神經(jīng)元個(gè)數(shù) 
n_hidden_2 = 128 # 第二編碼層神經(jīng)元個(gè)數(shù) 
# 權(quán)重和偏置的變化在編碼層和解碼層順序是相逆的 
# 權(quán)重參數(shù)矩陣維度是每層的 輸入*輸出,偏置參數(shù)維度取決于輸出層的單元數(shù) 
weights = { 
 'encoder_h2': tf.Variable(tf.random_normal([n_input, n_hidden_1])), 
 'encoder_h3': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 
 'decoder_h2': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])), 
 'decoder_h3': tf.Variable(tf.random_normal([n_hidden_1, n_input])), 
} 
biases = { 
 'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), 
 'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])), 
 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), 
 'decoder_b2': tf.Variable(tf.random_normal([n_input])), 
} 
 
# 每一層結(jié)構(gòu)都是 xW + b 
# 構(gòu)建編碼器 
def encoder(x): 
 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h2']), 
         biases['encoder_b1'])) 
 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h3']), 
         biases['encoder_b2'])) 
 return layer_2 
 
 
# 構(gòu)建解碼器 
def decoder(x): 
 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h2']), 
         biases['decoder_b1'])) 
 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h3']), 
         biases['decoder_b2'])) 
 return layer_2 
 
# 構(gòu)建模型 
encoder_op = encoder(X) 
decoder_op = decoder(encoder_op) 
 
# 預(yù)測(cè) 
y_pred = decoder_op 
y_true = X 
 
# 定義代價(jià)函數(shù)和優(yōu)化器 
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2)) #最小二乘法 
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) 
 
with tf.Session() as sess: 
 # tf.initialize_all_variables() no long valid from 
 # 2017-03-02 if using tensorflow >= 0.12 
 if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: 
  init = tf.initialize_all_variables() 
 else: 
  init = tf.global_variables_initializer() 
 sess.run(init) 
 # 首先計(jì)算總批數(shù),保證每次循環(huán)訓(xùn)練集中的每個(gè)樣本都參與訓(xùn)練,不同于批量訓(xùn)練 
 total_batch = int(mnist.train.num_examples/batch_size) #總批數(shù) 
 for epoch in range(training_epochs): 
  for i in range(total_batch): 
   batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0 
   # Run optimization op (backprop) and cost op (to get loss value) 
   _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs}) 
  if epoch % display_step == 0: 
   print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c)) 
 print("Optimization Finished!") 
 
 encode_decode = sess.run( 
  y_pred, feed_dict={X: mnist.test.images[:examples_to_show]}) 
 f, a = plt.subplots(2, 10, figsize=(10, 2)) 
 for i in range(examples_to_show): 
  a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28))) 
  a[1][i].imshow(np.reshape(encode_decode[i], (28, 28))) 
 plt.show() 

新聞標(biāo)題:TensorFlow實(shí)現(xiàn)AutoEncoder自編碼器-創(chuàng)新互聯(lián)
本文網(wǎng)址:http://weahome.cn/article/jicoj.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部