這篇文章主要為大家展示了“Python高級架構(gòu)模式有哪些”,內(nèi)容簡而易懂,條理清晰,希望能夠幫助大家解決疑惑,下面讓小編帶領(lǐng)大家一起研究并學(xué)習(xí)一下“Python高級架構(gòu)模式有哪些”這篇文章吧。
10年積累的成都做網(wǎng)站、網(wǎng)站建設(shè)經(jīng)驗,可以快速應(yīng)對客戶對網(wǎng)站的新想法和需求。提供各種問題對應(yīng)的解決方案。讓選擇我們的客戶得到更好、更有力的網(wǎng)絡(luò)服務(wù)。我雖然不認識你,你也不認識我。但先網(wǎng)站設(shè)計制作后付款的網(wǎng)站建設(shè)流程,更有吉利免費網(wǎng)站建設(shè)讓你可以放心的選擇與我們合作。
1、殘差連接是目前常用的組件,解決了大規(guī)模深度學(xué)習(xí)模型梯度消失和瓶頸問題。
通常,在10層以上的模型中追加殘差連接可能有幫助。
from keras import layers x = ... y = layers.Conv2D(128, 3, activation='relu', padding='same')(x) y = layers.Conv2D(128, 3, activation='relu', padding='same')(y) y = layers.MaxPooling2D(2, strides=2)(y) # 形狀不同,要做線性變換: residual = layers.Conv2D(128, 1, strides=2, padding='same')(x) # 使用 1×1 卷積,將 x 線性下采樣為與 y 具有相同的形狀 y = layers.add([y, residual])
2、標(biāo)準(zhǔn)化用于使模型看到的不同樣本更相似,有助于模型的優(yōu)化和泛化。
# Conv conv_model.add(layers.Conv2D(32, 3, activation='relu')) conv_model.add(layers.BatchNormalization()) # Dense dense_model.add(layers.Dense(32, activation='relu')) dense_model.add(layers.BatchNormalization()) 3、深度可分離卷積層,在Keras中被稱為SeparableConv2D,其功能與普通Conv2D相同。 但是SeparableConv2D比Conv2D輕,訓(xùn)練快,精度高。 from tensorflow.keras.models import Sequential, Model from tensorflow.keras import layers height = 64 width = 64 channels = 3 num_classes = 10 model = Sequential() model.add(layers.SeparableConv2D(32, 3, activation='relu', input_shape=(height, width, channels,))) model.add(layers.SeparableConv2D(64, 3, activation='relu')) model.add(layers.MaxPooling2D(2)) model.add(layers.SeparableConv2D(64, 3, activation='relu')) model.add(layers.SeparableConv2D(128, 3, activation='relu')) model.add(layers.MaxPooling2D(2)) model.add(layers.SeparableConv2D(64, 3, activation='relu')) model.add(layers.SeparableConv2D(128, 3, activation='relu')) model.add(layers.GlobalAveragePooling2D()) model.add(layers.Dense(32, activation='relu')) model.add(layers.Dense(num_classes, activation='softmax')) model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
以上是“Python高級架構(gòu)模式有哪些”這篇文章的所有內(nèi)容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內(nèi)容對大家有所幫助,如果還想學(xué)習(xí)更多知識,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道!