這篇文章主要介紹“PyTorch怎么實現(xiàn)對貓狗二分類訓(xùn)練集進(jìn)行讀取”,在日常操作中,相信很多人在PyTorch怎么實現(xiàn)對貓狗二分類訓(xùn)練集進(jìn)行讀取問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對大家解答”PyTorch怎么實現(xiàn)對貓狗二分類訓(xùn)練集進(jìn)行讀取”的疑惑有所幫助!接下來,請跟著小編一起來學(xué)習(xí)吧!
成都創(chuàng)新互聯(lián)-專業(yè)網(wǎng)站定制、快速模板網(wǎng)站建設(shè)、高性價比三沙網(wǎng)站開發(fā)、企業(yè)建站全套包干低至880元,成熟完善的模板庫,直接使用。一站式三沙網(wǎng)站制作公司更省心,省錢,快速模板網(wǎng)站建設(shè)找我們,業(yè)務(wù)覆蓋三沙地區(qū)。費用合理售后完善,10年實體公司更值得信賴。
從kaggle中下載貓狗二分類訓(xùn)練數(shù)據(jù),自己編寫一個DogCatDataset,使得pytorch可以對貓狗二分類訓(xùn)練集進(jìn)行讀取
import os import zipfile for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) # unzip print(os.getcwd()) os.makedirs('data', exist_ok=True) with zipfile.ZipFile('../input/dogs-vs-cats-redux-kernels-edition/train.zip') as train_zip: train_zip.extractall('data') with zipfile.ZipFile('../input/dogs-vs-cats-redux-kernels-edition/test.zip') as test_zip: test_zip.extractall('data') # show unzip dir train_dir = './data/train' test_dir = './data/test' print('len:', len(os.listdir(train_dir)), len(os.listdir(test_dir))) os.listdir(train_dir)[:5] os.listdir(test_dir)[:5] import numpy as np import pandas as pd import glob import os import torch import matplotlib.pyplot as plt from PIL import Image from sklearn.model_selection import train_test_split from torchvision import datasets, models, transforms import torch.nn as nn import torch.optim as optim batch_size = 100 device = 'cuda' if torch.cuda.is_available() else 'cpu' print(device) torch.manual_seed(1234) if device =='cuda': torch.cuda.manual_seed_all(1234) lr = 0.001 train_list = glob.glob(os.path.join(train_dir,'*.jpg')) test_list = glob.glob(os.path.join(test_dir, '*.jpg')) print('show data:', len(train_list), train_list[:3]) print('show data:', len(test_list), test_list[:3]) fig = plt.figure() ax = fig.add_subplot(1,1,1) img = Image.open(train_list[0]) plt.imshow(img) plt.axis('off') plt.show() print(type(img)) img_np = np.asarray(img) print(img_np.shape) train_list, val_list = train_test_split(train_list, test_size=0.2) print(len(train_list), train_list[:3]) print(len(val_list), val_list[:3]) train_transforms = transforms.Compose([ transforms.Resize((224, 224)), # transforms.RandomCrop(224), transforms.ToTensor(), ]) val_transforms = transforms.Compose([ transforms.Resize((224, 224)), # transforms.RandomCrop(224), transforms.ToTensor(), ]) test_transforms = transforms.Compose([ transforms.Resize((224, 224)), # transforms.RandomCrop(224), transforms.ToTensor(), ]) class dataset(torch.utils.data.Dataset): def __init__(self,file_list,now_transform): self.file_list = file_list # list of path self.transform = now_transform def __len__(self): self.filelength = len(self.file_list) return self.filelength def __getitem__(self,idx): img_path = self.file_list[idx] img = Image.open(img_path) # print(img.size) img_transformed = self.transform(img) # test 沒有標(biāo)簽? label = img_path.split('/')[-1].split('.')[0] if label == 'dog': label=1 elif label == 'cat': label=0 else: assert False return img_transformed,label train_data = dataset(train_list, train_transforms) val_data = dataset(val_list, test_transforms) # test_data = dataset(test_list, transform=test_transforms) train_loader = torch.utils.data.DataLoader(dataset = train_data, batch_size=batch_size, shuffle=True ) val_loader = torch.utils.data.DataLoader(dataset = val_data, batch_size=batch_size, shuffle=True) # test_loader = torch.utils.data.DataLoader(dataset = test_data, batch_size=batch_size, shuffle=True) print(len(train_data), len(train_loader)) print(len(val_data), len(val_loader)) print(train_data, type(train_data)) t1, t2 = train_data[7] print(t1, t2) print(type(t1)) print(t1.shape) class CNN_STD(nn.Module): def __init__(self): super(CNN_STD,self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(3,16,kernel_size=3, padding=0,stride=2), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(2) ) self.layer2 = nn.Sequential( nn.Conv2d(16,32, kernel_size=3, padding=0, stride=2), nn.BatchNorm2d(32), nn.ReLU(), nn.MaxPool2d(2) ) self.layer3 = nn.Sequential( nn.Conv2d(32,64, kernel_size=3, padding=0, stride=2), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(2) ) self.fc1 = nn.Linear(3*3*64,10) self.dropout = nn.Dropout(0.5) self.fc2 = nn.Linear(10,2) self.relu = nn.ReLU() def forward(self,x): out = self.layer1(x) out = self.layer2(out) out = self.layer3(out) out = out.view(out.size(0),-1) out = self.relu(self.fc1(out)) out = self.fc2(out) return out optimizer = optim.Adam(params = model.parameters(),lr=lr) loss_f = nn.CrossEntropyLoss() epochs = 10 print('start epoch iter, please wait...') for epoch in range(epochs): epoch_loss = 0 epoch_accuracy = 0 for data, label in train_loader: data = data.to(device) label = label.to(device) output = model(data) loss = loss_f(output, label) optimizer.zero_grad() loss.backward() optimizer.step() acc = ((output.argmax(dim=1) == label).float().mean()) epoch_accuracy += acc/len(train_loader) epoch_loss += loss/len(train_loader) print('Epoch : {}, train accuracy : {}, train loss : {}'.format(epoch+1, epoch_accuracy,epoch_loss)) with torch.no_grad(): epoch_val_accuracy=0 epoch_val_loss =0 for data, label in val_loader: data = data.to(device) label = label.to(device) val_output = model(data) val_loss = loss_f(val_output,label) acc = ((val_output.argmax(dim=1) == label).float().mean()) epoch_val_accuracy += acc/ len(val_loader) epoch_val_loss += val_loss/ len(val_loader) print('Epoch : {}, val_accuracy : {}, val_loss : {}'.format(epoch+1, epoch_val_accuracy,epoch_val_loss))
到此,關(guān)于“PyTorch怎么實現(xiàn)對貓狗二分類訓(xùn)練集進(jìn)行讀取”的學(xué)習(xí)就結(jié)束了,希望能夠解決大家的疑惑。理論與實踐的搭配能更好的幫助大家學(xué)習(xí),快去試試吧!若想繼續(xù)學(xué)習(xí)更多相關(guān)知識,請繼續(xù)關(guān)注創(chuàng)新互聯(lián)網(wǎng)站,小編會繼續(xù)努力為大家?guī)砀鄬嵱玫奈恼拢?/p>
網(wǎng)頁名稱:PyTorch怎么實現(xiàn)對貓狗二分類訓(xùn)練集進(jìn)行讀取
文章路徑:http://weahome.cn/article/jisoji.html