位圖定義:
創(chuàng)新互聯(lián)建站專注于企業(yè)營銷型網(wǎng)站建設、網(wǎng)站重做改版、尼金平網(wǎng)站定制設計、自適應品牌網(wǎng)站建設、H5開發(fā)、商城建設、集團公司官網(wǎng)建設、外貿網(wǎng)站制作、高端網(wǎng)站制作、響應式網(wǎng)頁設計等建站業(yè)務,價格優(yōu)惠性價比高,為尼金平等各大城市提供網(wǎng)站開發(fā)制作服務。
利用位的狀態(tài)來存放一個數(shù)是否存在,其實就是把一個數(shù)映射成一個簡單的數(shù)用以標記他是否存在,一般使用情況為查找一個數(shù)是否存在。
數(shù)據(jù)結構:
1/8=0 1%8=1 1<<1(第二個bit位置1)
2/8=0 2%8=2 1<<2(第3個bit位置1)
3/8=0 3%8=3 1<<3(第4個bit位置1)
4/8=0 ....
查找這個數(shù)是否存在:
先算出這個數(shù)的存在位置,然后找這個位置是否為1,如果是則存在否則不存在。
缺點:可讀性差。
應用:
1、給40億個不重復的unsigned int的整數(shù),沒排過序的,然后再給一個數(shù),如何快速判斷這個數(shù)是否在那40億個數(shù)當中
將這40億個數(shù)字存儲到bitmap中,然后對于給出的數(shù),判斷是否在bitmap中即可。
2、使用位圖法判斷×××數(shù)組是否存在重復
遍歷數(shù)組,一個一個放入bitmap,并且檢查其是否在bitmap中出現(xiàn)過,如果沒出現(xiàn)放入,否則即為重復的元素。
3、使用位圖法進行×××數(shù)組排序
首先遍歷數(shù)組,得到數(shù)組的最大最小值,然后根據(jù)這個最大最小值來縮小bitmap的范圍。這里需要注意對于int的負數(shù),都要轉化為unsigned int來處理,而且取位的時候,數(shù)字要減去最小值。
#define _CRT_SECURE_NO_WARNINGS #includeusing namespace std; #include class BitMap { public: BitMap(size_t size) { _bm.resize(size / 32 + 1); _size = 0; } BitMap() :_size(0) {} void Set(size_t num) { size_t index = num >> 5; if ((_bm[index] & 1 << (num % 32)) == 0) { _bm[index] |= 1 << (num % 32); ++_size; } } void Reset(size_t num) { size_t index = num >> 5; if ((_bm[index] & (1 << (num % 32))) == 1 << (num % 32)) { _bm[index] &= ~(1 << (num % 32)); --_size; } } bool Test(size_t num) { size_t index = num >> 5; if ((_bm[index] & (1 << (num % 32))) == 1 << (num % 32)) { return true; } return false; } size_t Size() { return _size; } private: vector _bm; size_t _size; }; // //void test() //{ //BitMap x(100); //x.Set(0); //x.Set(1); //x.Set(2); //x.Set(3); //x.Set(4); //x.Set(5); //x.Reset(1); //x.Reset(3); //int ret=x.Test(4); // // //} //int main() //{ //test(); //system("pause"); //return 0; //}
利用上述的位圖實現(xiàn)布隆過濾器:
仿函數(shù):
就是使一個類的使用看上去像一個函數(shù)。其實現(xiàn)就是類中實現(xiàn)一個operator(),這個類就有了類似函數(shù)的行為,就是一個仿函數(shù)類了。
布隆過濾器:
布隆過濾器(Bloom Filter)是1970年由布隆提出的。它實際上是一個很長的二進制向量和一系列隨機映射函數(shù)。布隆過濾器可以用于檢索一個元素是否在一個集合中。它的優(yōu)點是空間效率和查詢時間都遠遠超過一般的算法,缺點是有一定的誤識別率和刪除困難。
應用場景:
字處理軟件中,需要檢查一個英語單詞是否拼寫正確(也就是要判斷 它是否在已知的字典中);在 FBI,一個嫌疑人的名字是否已經(jīng)在嫌疑名單上;在網(wǎng)絡爬蟲里,一個網(wǎng)址是否被訪問過等等。最直接的方法就是將集合中全部的元素存在計算機中,遇到一個新 元素時,將它和集合中的元素直接比較即可。一般來講,計算機中的集合是用哈希表(hash table)來存儲的。它的好處是快速準確,缺點是費存儲空間。當集合比較小時,這個問題不顯著,但是當集合巨大時,哈希表存儲效率低的問題就顯現(xiàn)出來 了。
優(yōu)點:
布隆過濾器存儲空間和插入/查詢時間都是常數(shù)。另外, Hash 函數(shù)相互之間沒有關系,方便由硬件并行實現(xiàn)。布隆過濾器不需要存儲元素本身,在某些對保密要求非常嚴格的場合有優(yōu)勢。
缺點:
誤算率。隨著存入的元素數(shù)量增加,誤算率隨之增加。
#define _CRT_SECURE_NO_WARNINGS #include"Map.h" #include
size_t _GetSize(const size_t size) //設定容器下一次應該取得大小 { const int _PrimeSize = 28; static const unsigned long _PrimeList[_PrimeSize] = { 53ul, 97ul, 193ul, 389ul, 769ul, 1543ul, 3079ul, 6151ul, 12289ul, 24593ul, 49157ul, 98317ul, 196613ul, 393241ul, 786433ul, 1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul }; size_t i = 0; for (; i < _PrimeSize; i++) { if (_PrimeList[i] <= size && i != _PrimeSize - 1) { i++; } else { break; } } return _PrimeList[i]; } templatestruct __HashFunc1 { size_t BKDRHash(const char* str) { register size_t hash = 0; while (size_t ch = (size_t)*str++) { hash = hash * 131 + ch; } return hash; } size_t operator()(const T& str) { return BKDRHash(str.c_str()); } }; template struct __HashFunc2 { size_t SDBMHash(const char* str) { register size_t hash = 0; while (size_t ch = (size_t)*str++) { hash = 65599 * hash + ch; //hash = (size_t)ch + (hash << 6) + (hash << 16) - hash; } return hash; } size_t operator()(const T& str) { return SDBMHash(str.c_str()); } }; template struct __HashFunc3 { size_t RSHash(const char *str) { register size_t hash = 0; size_t magic = 63689; while (size_t ch = (size_t)*str++) { hash = hash * magic + ch; magic *= 378551; } return hash; } size_t operator()(const T& str) { return RSHash(str.c_str()); } }; template struct __HashFunc4 { size_t APHash(const char *str) { register size_t hash = 0; size_t ch; for (long i = 0; ch = (size_t)*str++; i++) { if ((i & 1) == 0) { hash ^= ((hash << 7) ^ ch ^ (hash >> 3)); } else { hash ^= (~((hash << 11) ^ ch ^ (hash >> 5))); } } return hash; } size_t operator()(const T& str) { return APHash(str.c_str()); } }; template struct __HashFunc5 { size_t JSHash(const char *str) { register size_t hash = 1315423911; while (size_t ch = (size_t)*str++) { hash ^= ((hash << 5) + ch + (hash >> 2)); } return hash; } size_t operator()(const T& str) { return JSHash(str.c_str()); } }; template , class HashFunc2 = __HashFunc2 , class HashFunc3 = __HashFunc3 , class HashFunc4 = __HashFunc4 , class HashFunc5 = __HashFunc5 > class BloomFilter { public: BloomFilter(size_t size = 0) :_bitmap(size), _capacity(size) {} void Set(const K& key) { size_t index1 = HashFunc1()(key); size_t index2 = HashFunc2()(key); size_t index3 = HashFunc3()(key); size_t index4 = HashFunc4()(key); size_t index5 = HashFunc5()(key); _bitmap.Set(index1%_capacity); _bitmap.Set(index2%_capacity); _bitmap.Set(index3%_capacity); _bitmap.Set(index4%_capacity); _bitmap.Set(index5%_capacity); } bool Test(const K& key) { size_t index1 = HashFunc1()(key); if (!(_bitmap.Test(index1%_capacity))) return false; size_t index2 = HashFunc2()(key); if (!(_bitmap.Test(index2%_capacity))) return false; size_t index3 = HashFunc3()(key); if (!(_bitmap.Test(index3%_capacity))) return false; size_t index4 = HashFunc4()(key); if (!(_bitmap.Test(index4%_capacity))) return false; size_t index5 = HashFunc4()(key); if (!(_bitmap.Test(index5%_capacity))) return false; return true; } private: BitMap _bitmap; size_t _capacity; }; void test() { BloomFilter<> bf(50); bf.Set("aaa"); bf.Set("bbb"); bf.Set("ccc"); int ret = bf.Test("acc"); ret = bf.Test("bbb"); ret = bf.Test("aaa"); ret = bf.Test("aaa"); } int main() { test(); system("pause"); return 0; }