這篇文章主要介紹“Python實時目標檢測如何實現(xiàn)”的相關(guān)知識,小編通過實際案例向大家展示操作過程,操作方法簡單快捷,實用性強,希望這篇“Python實時目標檢測如何實現(xiàn)”文章能幫助大家解決問題。
成都創(chuàng)新互聯(lián)公司不只是一家網(wǎng)站建設(shè)的網(wǎng)絡(luò)公司;我們對營銷、技術(shù)、服務(wù)都有自己獨特見解,公司采取“創(chuàng)意+綜合+營銷”一體化的方式為您提供更專業(yè)的服務(wù)!我們經(jīng)歷的每一步也許不一定是最完美的,但每一步都有值得深思的意義。我們珍視每一份信任,關(guān)注我們的成都網(wǎng)站建設(shè)、網(wǎng)站設(shè)計質(zhì)量和服務(wù)品質(zhì),在得到用戶滿意的同時,也能得到同行業(yè)的專業(yè)認可,能夠為行業(yè)創(chuàng)新發(fā)展助力。未來將繼續(xù)專注于技術(shù)創(chuàng)新,服務(wù)升級,滿足企業(yè)一站式網(wǎng)絡(luò)營銷推廣需求,讓再小的高端網(wǎng)站設(shè)計也能產(chǎn)生價值!
1. 設(shè)置要求:
TensorFlow版本在1.15.0或以上
執(zhí)行pip install TensorFlow安裝最新版本
一切就緒,現(xiàn)在開始吧!
2. 設(shè)置環(huán)境
第一步:從Github上下載或復(fù)制TensorFlow目標檢測的代碼到本地計算機
在終端運行如下命令:
git clonehttps://github.com/tensorflow/models.git
第二步:安裝依賴項
下一步是確定計算機上配備了運行目標檢測器所需的庫和組件。
下面列舉了本項目所依賴的庫。(大部分依賴都是TensorFlow自帶的)
Cython
contextlib2
pillow
lxml
matplotlib
若有遺漏的組件,在運行環(huán)境中執(zhí)行pip install即可。
第三步:安裝Protobuf編譯器
谷歌的Protobuf,又稱Protocol buffers,是一種語言無關(guān)、平臺無關(guān)、可擴展的序列化結(jié)構(gòu)數(shù)據(jù)的機制。Protobuf幫助程序員定義數(shù)據(jù)結(jié)構(gòu),輕松地在各種數(shù)據(jù)流中使用各種語言進行編寫和讀取結(jié)構(gòu)數(shù)據(jù)。
Protobuf也是本項目的依賴之一。點擊這里了解更多關(guān)于Protobufs的知識。接下來把Protobuf安裝到計算機上。
打開終端或者打開命令提示符,將地址改為復(fù)制的代碼倉庫,在終端執(zhí)行如下命令:
cd models/research wget -Oprotobuf.zip https://github.com/protocolbuffers/protobuf/releases/download/v3.9.1/protoc-3.9.1-osx-x86_64.zip unzipprotobuf.zip
注意:請務(wù)必在models/research目錄解壓protobuf.zip文件。
第四步:編輯Protobuf編譯器
從research/ directory目錄中執(zhí)行如下命令編輯Protobuf編譯器:
./bin/protoc object_detection/protos/*.proto--python_out=.
用Python實現(xiàn)目標檢測
現(xiàn)在所有的依賴項都已經(jīng)安裝完畢,可以用Python實現(xiàn)目標檢測了。
在下載的代碼倉庫中,將目錄更改為:
models/research/object_detection
這個目錄下有一個叫object_detection_tutorial.ipynb的ipython notebook。該文件是演示目標檢測算法的demo,在執(zhí)行時會用到指定的模型:
ssd_mobilenet_v1_coco_2017_11_17
這一測試會識別代碼庫中提供的兩張測試圖片。下面是測試結(jié)果之一:
要檢測直播視頻中的目標還需要一些微調(diào)。在同一文件夾中新建一個Jupyter notebook,按照下面的代碼操作:
[1]:
import numpy as np import os import six.moves.urllib as urllib import sys import tarfile import tensorflow as tf import zipfile from distutils.version import StrictVersion from collections import defaultdict from io import StringIO from matplotlib import pyplot as plt from PIL import Image # This isneeded since the notebook is stored in the object_detection folder. sys.path.append("..") from utils import ops as utils_ops if StrictVersion(tf.__version__) < StrictVersion( 1.12.0 ): raise ImportError( Please upgrade your TensorFlow installation to v1.12.*. )
[2]:
# This isneeded to display the images. get_ipython().run_line_magic( matplotlib , inline )
[3]:
# Objectdetection imports # Here arethe imports from the object detection module. from utils import label_map_util from utils import visualization_utils as vis_util
[4]:
# Modelpreparation # Anymodel exported using the `export_inference_graph.py` tool can be loaded heresimply by changing `PATH_TO_FROZEN_GRAPH` to point to a new .pb file. # Bydefault we use an "SSD with Mobilenet" model here. #See https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md #for alist of other models that can be run out-of-the-box with varying speeds andaccuracies. # Whatmodel to download. MODEL_NAME= ssd_mobilenet_v1_coco_2017_11_17 MODEL_FILE= MODEL_NAME + .tar.gz DOWNLOAD_BASE= http://download.tensorflow.org/models/object_detection/ # Path tofrozen detection graph. This is the actual model that is used for the objectdetection. PATH_TO_FROZEN_GRAPH= MODEL_NAME + /frozen_inference_graph.pb # List ofthe strings that is used to add correct label for each box. PATH_TO_LABELS= os.path.join( data , mscoco_label_map.pbtxt )
[5]:
#DownloadModel opener =urllib.request.URLopener() opener.retrieve(DOWNLOAD_BASE+ MODEL_FILE, MODEL_FILE) tar_file =tarfile.open(MODEL_FILE) for file in tar_file.getmembers(): file_name= os.path.basename(file.name) if frozen_inference_graph.pb in file_name: tar_file.extract(file,os.getcwd())
[6]:
# Load a(frozen) Tensorflow model into memory. detection_graph= tf.Graph() with detection_graph.as_default(): od_graph_def= tf.GraphDef() withtf.gfile.GFile(PATH_TO_FROZEN_GRAPH, rb ) as fid: serialized_graph= fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def,name= )
[7]:
# Loadinglabel map # Labelmaps map indices to category names, so that when our convolution networkpredicts `5`, #we knowthat this corresponds to `airplane`. Here we use internal utilityfunctions, #butanything that returns a dictionary mapping integers to appropriate stringlabels would be fine category_index= label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS,use_display_name=True)
[8]:
defrun_inference_for_single_image(image, graph): with graph.as_default(): with tf.Session() as sess: # Get handles to input and output tensors ops= tf.get_default_graph().get_operations() all_tensor_names= {output.name for op in ops for output in op.outputs} tensor_dict= {} for key in [ num_detections , detection_boxes , detection_scores , detection_classes , detection_masks ]: tensor_name= key + :0 if tensor_name in all_tensor_names: tensor_dict[key]= tf.get_default_graph().get_tensor_by_name(tensor_name) if detection_masks in tensor_dict: # The following processing is only for single image detection_boxes= tf.squeeze(tensor_dict[ detection_boxes ], [0]) detection_masks= tf.squeeze(tensor_dict[ detection_masks ], [0]) # Reframe is required to translate mask from boxcoordinates to image coordinates and fit the image size. real_num_detection= tf.cast(tensor_dict[ num_detections ][0], tf.int32) detection_boxes= tf.slice(detection_boxes, [0, 0], [real_num_detection, -1]) detection_masks= tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1]) detection_masks_reframed= utils_ops.reframe_box_masks_to_image_masks( detection_masks,detection_boxes, image.shape[1],image.shape[2]) detection_masks_reframed= tf.cast( tf.greater(detection_masks_reframed,0.5),tf.uint8) # Follow the convention by adding back the batchdimension tensor_dict[ detection_masks ] =tf.expand_dims( detection_masks_reframed,0) image_tensor= tf.get_default_graph().get_tensor_by_name( image_tensor:0 ) # Run inference output_dict= sess.run(tensor_dict, feed_dict={image_tensor: image}) # all outputs are float32 numpy arrays, so convert typesas appropriate output_dict[ num_detections ] =int(output_dict[ num_detections ][0]) output_dict[ detection_classes ] =output_dict[ detection_classes ][0].astype(np.int64) output_dict[ detection_boxes ] =output_dict[ detection_boxes ][0] output_dict[ detection_scores ] =output_dict[ detection_scores ][0] if detection_masks in output_dict: output_dict[ detection_masks ] =output_dict[ detection_masks ][0] return output_dict
[9]:
import cv2 cam =cv2.cv2.VideoCapture(0) rolling = True while (rolling): ret,image_np = cam.read() image_np_expanded= np.expand_dims(image_np, axis=0) # Actual detection. output_dict= run_inference_for_single_image(image_np_expanded, detection_graph) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image_np, output_dict[ detection_boxes ], output_dict[ detection_classes ], output_dict[ detection_scores ], category_index, instance_masks=output_dict.get( detection_masks ), use_normalized_coordinates=True, line_thickness=8) cv2.imshow( image , cv2.resize(image_np,(1000,800))) if cv2.waitKey(25) & 0xFF == ord( q ): break cv2.destroyAllWindows() cam.release()
關(guān)于“Python實時目標檢測如何實現(xiàn)”的內(nèi)容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業(yè)相關(guān)的知識,可以關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,小編每天都會為大家更新不同的知識點。