本篇內(nèi)容介紹了“怎么使用PostgreSQL ExecAgg函數(shù)”的有關(guān)知識(shí),在實(shí)際案例的操作過(guò)程中,不少人都會(huì)遇到這樣的困境,接下來(lái)就讓小編帶領(lǐng)大家學(xué)習(xí)一下如何處理這些情況吧!希望大家仔細(xì)閱讀,能夠?qū)W有所成!
為遵義等地區(qū)用戶(hù)提供了全套網(wǎng)頁(yè)設(shè)計(jì)制作服務(wù),及遵義網(wǎng)站建設(shè)行業(yè)解決方案。主營(yíng)業(yè)務(wù)為成都網(wǎng)站建設(shè)、網(wǎng)站建設(shè)、遵義網(wǎng)站設(shè)計(jì),以傳統(tǒng)方式定制建設(shè)網(wǎng)站,并提供域名空間備案等一條龍服務(wù),秉承以專(zhuān)業(yè)、用心的態(tài)度為用戶(hù)提供真誠(chéng)的服務(wù)。我們深信只要達(dá)到每一位用戶(hù)的要求,就會(huì)得到認(rèn)可,從而選擇與我們長(zhǎng)期合作。這樣,我們也可以走得更遠(yuǎn)!
AggState
聚合函數(shù)執(zhí)行時(shí)狀態(tài)結(jié)構(gòu)體,內(nèi)含AggStatePerAgg等結(jié)構(gòu)體
/* --------------------- * AggState information * * ss.ss_ScanTupleSlot refers to output of underlying plan. * ss.ss_ScanTupleSlot指的是基礎(chǔ)計(jì)劃的輸出. * (ss = ScanState,ps = PlanState) * * Note: ss.ps.ps_ExprContext contains ecxt_aggvalues and * ecxt_aggnulls arrays, which hold the computed agg values for the current * input group during evaluation of an Agg node's output tuple(s). We * create a second ExprContext, tmpcontext, in which to evaluate input * expressions and run the aggregate transition functions. * 注意:ss.ps.ps_ExprContext包含了ecxt_aggvalues和ecxt_aggnulls數(shù)組, * 這兩個(gè)數(shù)組保存了在計(jì)算agg節(jié)點(diǎn)的輸出元組時(shí)當(dāng)前輸入組已計(jì)算的agg值. * --------------------- */ /* these structs are private in nodeAgg.c: */ //在nodeAgg.c中私有的結(jié)構(gòu)體 typedef struct AggStatePerAggData *AggStatePerAgg; typedef struct AggStatePerTransData *AggStatePerTrans; typedef struct AggStatePerGroupData *AggStatePerGroup; typedef struct AggStatePerPhaseData *AggStatePerPhase; typedef struct AggStatePerHashData *AggStatePerHash; typedef struct AggState { //第一個(gè)字段是NodeTag(繼承自ScanState) ScanState ss; /* its first field is NodeTag */ //targetlist和quals中所有的Aggref List *aggs; /* all Aggref nodes in targetlist & quals */ //鏈表的大小(可以為0) int numaggs; /* length of list (could be zero!) */ //pertrans條目大小 int numtrans; /* number of pertrans items */ //Agg策略模式 AggStrategy aggstrategy; /* strategy mode */ //agg-splitting模式,參見(jiàn)nodes.h AggSplit aggsplit; /* agg-splitting mode, see nodes.h */ //指向當(dāng)前步驟數(shù)據(jù)的指針 AggStatePerPhase phase; /* pointer to current phase data */ //步驟數(shù)(包括0) int numphases; /* number of phases (including phase 0) */ //當(dāng)前步驟 int current_phase; /* current phase number */ //per-Aggref信息 AggStatePerAgg peragg; /* per-Aggref information */ //per-Trans狀態(tài)信息 AggStatePerTrans pertrans; /* per-Trans state information */ //長(zhǎng)生命周期數(shù)據(jù)的ExprContexts(hashtable) ExprContext *hashcontext; /* econtexts for long-lived data (hashtable) */ ////長(zhǎng)生命周期數(shù)據(jù)的ExprContexts(每一個(gè)GS使用) ExprContext **aggcontexts; /* econtexts for long-lived data (per GS) */ //輸入表達(dá)式的ExprContext ExprContext *tmpcontext; /* econtext for input expressions */ #define FIELDNO_AGGSTATE_CURAGGCONTEXT 14 //當(dāng)前活躍的aggcontext ExprContext *curaggcontext; /* currently active aggcontext */ //當(dāng)前活躍的aggregate(如存在) AggStatePerAgg curperagg; /* currently active aggregate, if any */ #define FIELDNO_AGGSTATE_CURPERTRANS 16 //當(dāng)前活躍的trans state AggStatePerTrans curpertrans; /* currently active trans state, if any */ //輸入結(jié)束? bool input_done; /* indicates end of input */ //Agg掃描結(jié)束? bool agg_done; /* indicates completion of Agg scan */ //最后一個(gè)grouping set int projected_set; /* The last projected grouping set */ #define FIELDNO_AGGSTATE_CURRENT_SET 20 //將要解析的當(dāng)前grouping set int current_set; /* The current grouping set being evaluated */ //當(dāng)前投影操作的分組列 Bitmapset *grouped_cols; /* grouped cols in current projection */ //倒序的分組列鏈表 List *all_grouped_cols; /* list of all grouped cols in DESC order */ /* These fields are for grouping set phase data */ //-------- 下面的列用于grouping set步驟數(shù)據(jù) //所有步驟中最大的sets大小 int maxsets; /* The max number of sets in any phase */ //所有步驟的數(shù)組 AggStatePerPhase phases; /* array of all phases */ //對(duì)于phases > 1,已排序的輸入信息 Tuplesortstate *sort_in; /* sorted input to phases > 1 */ //對(duì)于下一個(gè)步驟,輸入已拷貝 Tuplesortstate *sort_out; /* input is copied here for next phase */ //排序結(jié)果的slot TupleTableSlot *sort_slot; /* slot for sort results */ /* these fields are used in AGG_PLAIN and AGG_SORTED modes: */ //------- 下面的列用于AGG_PLAIN和AGG_SORTED模式: //per-group指針的grouping set編號(hào)數(shù)組 AggStatePerGroup *pergroups; /* grouping set indexed array of per-group * pointers */ //當(dāng)前組的第一個(gè)元組拷貝 HeapTuple grp_firstTuple; /* copy of first tuple of current group */ /* these fields are used in AGG_HASHED and AGG_MIXED modes: */ //--------- 下面的列用于AGG_HASHED和AGG_MIXED模式: //是否已填充hash表? bool table_filled; /* hash table filled yet? */ //hash桶數(shù)? int num_hashes; //相應(yīng)的哈希表數(shù)據(jù)數(shù)組 AggStatePerHash perhash; /* array of per-hashtable data */ //per-group指針的grouping set編號(hào)數(shù)組 AggStatePerGroup *hash_pergroup; /* grouping set indexed array of * per-group pointers */ /* support for evaluation of agg input expressions: */ //---------- agg輸入表達(dá)式解析支持 #define FIELDNO_AGGSTATE_ALL_PERGROUPS 34 //首先是->pergroups,然后是hash_pergroup AggStatePerGroup *all_pergroups; /* array of first ->pergroups, than * ->hash_pergroup */ //投影實(shí)現(xiàn)機(jī)制 ProjectionInfo *combinedproj; /* projection machinery */ } AggState; /* Primitive options supported by nodeAgg.c: */ //nodeag .c支持的基本選項(xiàng) #define AGGSPLITOP_COMBINE 0x01 /* substitute combinefn for transfn */ #define AGGSPLITOP_SKIPFINAL 0x02 /* skip finalfn, return state as-is */ #define AGGSPLITOP_SERIALIZE 0x04 /* apply serializefn to output */ #define AGGSPLITOP_DESERIALIZE 0x08 /* apply deserializefn to input */ /* Supported operating modes (i.e., useful combinations of these options): */ //支持的操作模式 typedef enum AggSplit { /* Basic, non-split aggregation: */ //基本 : 非split聚合 AGGSPLIT_SIMPLE = 0, /* Initial phase of partial aggregation, with serialization: */ //部分聚合的初始步驟,序列化 AGGSPLIT_INITIAL_SERIAL = AGGSPLITOP_SKIPFINAL | AGGSPLITOP_SERIALIZE, /* Final phase of partial aggregation, with deserialization: */ //部分聚合的最終步驟,反序列化 AGGSPLIT_FINAL_DESERIAL = AGGSPLITOP_COMBINE | AGGSPLITOP_DESERIALIZE } AggSplit; /* Test whether an AggSplit value selects each primitive option: */ //測(cè)試AggSplit選擇了哪些基本選項(xiàng) #define DO_AGGSPLIT_COMBINE(as) (((as) & AGGSPLITOP_COMBINE) != 0) #define DO_AGGSPLIT_SKIPFINAL(as) (((as) & AGGSPLITOP_SKIPFINAL) != 0) #define DO_AGGSPLIT_SERIALIZE(as) (((as) & AGGSPLITOP_SERIALIZE) != 0) #define DO_AGGSPLIT_DESERIALIZE(as) (((as) & AGGSPLITOP_DESERIALIZE) != 0)
ExecAgg函數(shù),首先獲取AggState運(yùn)行狀態(tài),然后根據(jù)各個(gè)階段(aggstate->phase)的策略(aggstrategy)執(zhí)行相應(yīng)的邏輯.如使用Hash聚合,則只有一個(gè)節(jié)點(diǎn),但有兩個(gè)策略,首先是AGG_HASHED,該策略對(duì)輸入元組按照分組列值進(jìn)行Hash,同時(shí)執(zhí)行轉(zhuǎn)換函數(shù)計(jì)算中間結(jié)果值,緩存到哈希表中;然后執(zhí)行AGG_MIXED策略,從Hash表中獲取結(jié)果元組并返回結(jié)果元組(每一result為一個(gè)結(jié)果行).
/* * ExecAgg - * * ExecAgg receives tuples from its outer subplan and aggregates over * the appropriate attribute for each aggregate function use (Aggref * node) appearing in the targetlist or qual of the node. The number * of tuples to aggregate over depends on whether grouped or plain * aggregation is selected. In grouped aggregation, we produce a result * row for each group; in plain aggregation there's a single result row * for the whole query. In either case, the value of each aggregate is * stored in the expression context to be used when ExecProject evaluates * the result tuple. * ExecAgg接收從outer子計(jì)劃返回的元組合適的屬性上為每一個(gè)聚合函數(shù)(出現(xiàn)在投影列或節(jié)點(diǎn)表達(dá)式)執(zhí)行聚合. * 需要聚合的元組數(shù)量依賴(lài)于是否已分組或者選擇普通聚合. * 在已分組的聚合操作宏,為每一個(gè)組產(chǎn)生結(jié)果行;普通聚合,整個(gè)查詢(xún)只有一個(gè)結(jié)果行. * 不管哪種情況,每一個(gè)聚合結(jié)果值都會(huì)存儲(chǔ)在表達(dá)式上下文中(ExecProject會(huì)解析結(jié)果元組) */ static TupleTableSlot * ExecAgg(PlanState *pstate) { AggState *node = castNode(AggState, pstate); TupleTableSlot *result = NULL; CHECK_FOR_INTERRUPTS(); if (!node->agg_done) { /* Dispatch based on strategy */ //基于策略進(jìn)行分發(fā) switch (node->phase->aggstrategy) { case AGG_HASHED: if (!node->table_filled) agg_fill_hash_table(node); /* FALLTHROUGH */ //填充后,執(zhí)行MIXED case AGG_MIXED: result = agg_retrieve_hash_table(node); break; case AGG_PLAIN: case AGG_SORTED: result = agg_retrieve_direct(node); break; } if (!TupIsNull(result)) return result; } return NULL; }
agg_fill_hash_table
讀取輸入并構(gòu)建哈希表.
lookup_hash_entries函數(shù)根據(jù)輸入元組構(gòu)建分組列哈希表(搜索或新建條目),advance_aggregates調(diào)用轉(zhuǎn)換函數(shù)計(jì)算中間結(jié)果并緩存.
/* * ExecAgg for hashed case: read input and build hash table * 讀取輸入并構(gòu)建哈希表 */ static void agg_fill_hash_table(AggState *aggstate) { TupleTableSlot *outerslot; ExprContext *tmpcontext = aggstate->tmpcontext; /* * Process each outer-plan tuple, and then fetch the next one, until we * exhaust the outer plan. * 處理每一個(gè)outer-plan返回的元組,然后繼續(xù)提取下一個(gè),直至完成所有元組的處理. */ for (;;) { //--------- 循環(huán)直至完成所有元組的處理 //提取輸入的元組 outerslot = fetch_input_tuple(aggstate); if (TupIsNull(outerslot)) break;//已完成處理,退出循環(huán) /* set up for lookup_hash_entries and advance_aggregates */ //配置lookup_hash_entries和advance_aggregates函數(shù) //把元組放在臨時(shí)內(nèi)存上下文中 tmpcontext->ecxt_outertuple = outerslot; /* Find or build hashtable entries */ //檢索或構(gòu)建哈希表?xiàng)l目 lookup_hash_entries(aggstate); /* Advance the aggregates (or combine functions) */ //推動(dòng)聚合(或組合函數(shù)) advance_aggregates(aggstate); /* * Reset per-input-tuple context after each tuple, but note that the * hash lookups do this too * 重置per-input-tuple內(nèi)存上下文,但需要注意hash檢索也會(huì)做這個(gè)事情 */ ResetExprContext(aggstate->tmpcontext); } aggstate->table_filled = true; /* Initialize to walk the first hash table */ //初始化用于遍歷第一個(gè)哈希表 select_current_set(aggstate, 0, true); ResetTupleHashIterator(aggstate->perhash[0].hashtable, &aggstate->perhash[0].hashiter); }
agg_retrieve_hash_table
agg_retrieve_hash_table函數(shù)在hash表中檢索結(jié)果,執(zhí)行投影等相關(guān)操作.
/* * ExecAgg for hashed case: retrieving groups from hash table * ExecAgg(Hash實(shí)現(xiàn)版本):在hash表中檢索組 */ static TupleTableSlot * agg_retrieve_hash_table(AggState *aggstate) { ExprContext *econtext; AggStatePerAgg peragg; AggStatePerGroup pergroup; TupleHashEntryData *entry; TupleTableSlot *firstSlot; TupleTableSlot *result; AggStatePerHash perhash; /* * get state info from node. * 從node節(jié)點(diǎn)中獲取狀態(tài)信息. * * econtext is the per-output-tuple expression context. * econtext是per-output-tuple表達(dá)式上下文. */ econtext = aggstate->ss.ps.ps_ExprContext; peragg = aggstate->peragg; firstSlot = aggstate->ss.ss_ScanTupleSlot; /* * Note that perhash (and therefore anything accessed through it) can * change inside the loop, as we change between grouping sets. * 注意,在分組之間切換時(shí),perhash在循環(huán)中可能會(huì)改變 */ perhash = &aggstate->perhash[aggstate->current_set]; /* * We loop retrieving groups until we find one satisfying * aggstate->ss.ps.qual * 循環(huán)檢索groups,直至檢索到一個(gè)符合aggstate->ss.ps.qual條件的組. */ while (!aggstate->agg_done) { //------------- 選好 //獲取Slot TupleTableSlot *hashslot = perhash->hashslot; int i; //檢查中斷 CHECK_FOR_INTERRUPTS(); /* * Find the next entry in the hash table * 檢索hash表的下一個(gè)條目 */ entry = ScanTupleHashTable(perhash->hashtable, &perhash->hashiter); if (entry == NULL) { //條目為NULL,切換到下一個(gè)set int nextset = aggstate->current_set + 1; if (nextset < aggstate->num_hashes) { /* * Switch to next grouping set, reinitialize, and restart the * loop. * 切換至下一個(gè)grouping set,重新初始化并重啟循環(huán) */ select_current_set(aggstate, nextset, true); perhash = &aggstate->perhash[aggstate->current_set]; ResetTupleHashIterator(perhash->hashtable, &perhash->hashiter); continue; } else { /* No more hashtables, so done */ //已完成檢索,設(shè)置標(biāo)記,退出 aggstate->agg_done = true; return NULL; } } /* * Clear the per-output-tuple context for each group * 為每一個(gè)group清除per-output-tuple上下文 * * We intentionally don't use ReScanExprContext here; if any aggs have * registered shutdown callbacks, they mustn't be called yet, since we * might not be done with that agg. * 在這里不會(huì)用到ReScanExprContext,如果存在aggs注冊(cè)了shutdown回調(diào), * 那應(yīng)該還沒(méi)有調(diào)用,因?yàn)槲覀兛赡苓€沒(méi)有完成該agg的處理. */ ResetExprContext(econtext); /* * Transform representative tuple back into one with the right * columns. * 將典型元組轉(zhuǎn)回具有正確列的元組. */ ExecStoreMinimalTuple(entry->firstTuple, hashslot, false); slot_getallattrs(hashslot); //清理元組 //重置firstSlot ExecClearTuple(firstSlot); memset(firstSlot->tts_isnull, true, firstSlot->tts_tupleDescriptor->natts * sizeof(bool)); for (i = 0; i < perhash->numhashGrpCols; i++) { //重置firstSlot int varNumber = perhash->hashGrpColIdxInput[i] - 1; firstSlot->tts_values[varNumber] = hashslot->tts_values[i]; firstSlot->tts_isnull[varNumber] = hashslot->tts_isnull[i]; } ExecStoreVirtualTuple(firstSlot); pergroup = (AggStatePerGroup) entry->additional; /* * Use the representative input tuple for any references to * non-aggregated input columns in the qual and tlist. * 為qual和tlist中的非聚合輸入列依賴(lài)使用典型輸入元組 */ econtext->ecxt_outertuple = firstSlot; //準(zhǔn)備投影slot prepare_projection_slot(aggstate, econtext->ecxt_outertuple, aggstate->current_set); //最終的聚合操作 finalize_aggregates(aggstate, peragg, pergroup); //投影 result = project_aggregates(aggstate); if (result) return result; } /* No more groups */ //沒(méi)有更多的groups了,返回NULL return NULL; }
“怎么使用PostgreSQL ExecAgg函數(shù)”的內(nèi)容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業(yè)相關(guān)的知識(shí)可以關(guān)注創(chuàng)新互聯(lián)網(wǎng)站,小編將為大家輸出更多高質(zhì)量的實(shí)用文章!