真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

怎么使用C#將Tensorflow訓練的.pb文件用在生產環(huán)境

這篇文章主要介紹怎么使用C#將Tensorflow訓練的.pb文件用在生產環(huán)境,文中介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們一定要看完!

創(chuàng)新互聯(lián)公司是一家專業(yè)提供東莞企業(yè)網(wǎng)站建設,專注與成都網(wǎng)站制作、網(wǎng)站設計、H5建站、小程序制作等業(yè)務。10年已為東莞眾多企業(yè)、政府機構等服務。創(chuàng)新互聯(lián)專業(yè)網(wǎng)站設計公司優(yōu)惠進行中。

TensorFlow是Google開源的一款人工智能學習系統(tǒng)。Tensor的意思是張量,代表N維數(shù)組;Flow的意思是流,代表基于數(shù)據(jù)流圖的計算。把N維數(shù)字從流圖的一端流動到另一端的過程,就是人工智能神經網(wǎng)絡進行分析和處理的過程。

怎么使用C#將Tensorflow訓練的.pb文件用在生產環(huán)境

使用分步驟保存了的ckpt文件

這個貌似脫離不了tensorflow框架,而且生成的ckpt文件比較大,發(fā)布到生產環(huán)境的時候,還得把python的算法文件一起搞上去,如何和其他程序交互,可能還得自己去寫服務。估計很少有人這么做,貌似性能也很一般。

使用tensorflow Serving

tf Serving貌似是大家都比較推崇的方法。需要編譯tfServing,然后把模型導出來。直接執(zhí)行tf Serving的進程,就可以對外提供服務了。具體調用的時候,還得自己寫客戶端,使用人gRPC去調用Serving,然后再對外提供服務,聽上去比較麻煩。而且我今天沒太多的時間去研究gRPC,網(wǎng)絡上關于客戶端很多都是用python寫的,我感覺自己的python水平比較菜,沒信心能寫好。所以這個方式就先沒研究。

生產.pb文件,然后寫程序去調用.pb文件

生成了.pb文件以后,就可以被程序去直接調用,傳入?yún)?shù),然后就可以傳出來參數(shù),而且生成的.pb文件非常的小。而我又有比較豐富的.net開發(fā)經驗。在想,是否可以用C#來解析.pb文件,然后做一個.net core的對外服務的API,這樣貌似更加高效,關鍵是自己熟悉這款的開發(fā),不用花費太多的時間去摸索。、

具體的思路

使用.net下面的TensorFlow框架tensorflowSharp(貌似還是沒脫離了框架).去調用pb文件,然后做成.net core web API 對外提供服務。

具體的實現(xiàn)

直接上代碼,非常簡單,本身設計到tensorflowsharp的地方非常的少

var graph = new TFGraph();
//重點是下面的這句,把訓練好的pb文件給讀出來字節(jié),然后導入
var model = File.ReadAllBytes(model_file);
graph.Import(model);

Console.WriteLine("請輸入一個圖片的地址");
var src = Console.ReadLine();
var tensor = ImageUtil.CreateTensorFromImageFile(src);

using (var sess = new TFSession(graph))
{
var runner = sess.GetRunner();
runner.AddInput(graph["Cast_1"][0], tensor);
var r = runner.Run(graph.softmax(graph["softmax_linear/softmax_linear"][0]));
var v = (float[,])r.GetValue();
Console.WriteLine(v[0,0]);
Console.WriteLine(v[0, 1]);
}

ImageUtil這個類庫是tensorflowSharp官方的例子中一個把圖片轉成tensor的類庫,我直接copy過來了,根據(jù)我的網(wǎng)絡,修改了幾個參數(shù)。

public static class ImageUtil
{
public static TFTensor CreateTensorFromImageFile(byte[] contents, TFDataType destinationDataType = TFDataType.Float)
{
var tensor = TFTensor.CreateString(contents);

TFOutput input, output;

// Construct a graph to normalize the image
using (var graph = ConstructGraphToNormalizeImage(out input, out output, destinationDataType))
{
// Execute that graph to normalize this one image
using (var session = new TFSession(graph))
{
var normalized = session.Run(
inputs: new[] { input },
inputValues: new[] { tensor },
outputs: new[] { output });

return normalized[0];
}
}
}
// Convert the image in filename to a Tensor suitable as input to the Inception model.
public static TFTensor CreateTensorFromImageFile(string file, TFDataType destinationDataType = TFDataType.Float)
{
var contents = File.ReadAllBytes(file);

// DecodeJpeg uses a scalar String-valued tensor as input.
var tensor = TFTensor.CreateString(contents);

TFOutput input, output;

// Construct a graph to normalize the image
using (var graph = ConstructGraphToNormalizeImage(out input, out output, destinationDataType))
{
// Execute that graph to normalize this one image
using (var session = new TFSession(graph))
{
var normalized = session.Run(
inputs: new[] { input },
inputValues: new[] { tensor },
outputs: new[] { output });

return normalized[0];
}
}
}

// The inception model takes as input the image described by a Tensor in a very
// specific normalized format (a particular image size, shape of the input tensor,
// normalized pixel values etc.).
//
// This function constructs a graph of TensorFlow operations which takes as
// input a JPEG-encoded string and returns a tensor suitable as input to the
// inception model.
private static TFGraph ConstructGraphToNormalizeImage(out TFOutput input, out TFOutput output, TFDataType destinationDataType = TFDataType.Float)
{
// Some constants specific to the pre-trained model at:
// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
//
// - The model was trained after with images scaled to 224x224 pixels.
// - The colors, represented as R, G, B in 1-byte each were converted to
// float using (value - Mean)/Scale.

const int W = 128;
const int H = 128;
const float Mean = 0;
const float Scale = 1f;

var graph = new TFGraph();
input = graph.Placeholder(TFDataType.String);

output = graph.Cast(
graph.Div(x: graph.Sub(x: graph.ResizeBilinear(images: graph.ExpandDims(input: graph.Cast(graph.DecodeJpeg(contents: input, channels: 3), DstT: TFDataType.Float),
dim: graph.Const(0, "make_batch")),
size: graph.Const(new int[] { W, H }, "size")),
y: graph.Const(Mean, "mean")),
y: graph.Const(Scale, "scale")), destinationDataType);

return graph;
}
}

以上是“怎么使用C#將Tensorflow訓練的.pb文件用在生產環(huán)境”這篇文章的所有內容,感謝各位的閱讀!希望分享的內容對大家有幫助,更多相關知識,歡迎關注創(chuàng)新互聯(lián)行業(yè)資訊頻道!


網(wǎng)頁標題:怎么使用C#將Tensorflow訓練的.pb文件用在生產環(huán)境
URL分享:http://weahome.cn/article/jjppcs.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部