本篇內(nèi)容主要講解“opencv3/C++中怎么實(shí)現(xiàn)平面對(duì)象識(shí)別和透視變換”,感興趣的朋友不妨來看看。本文介紹的方法操作簡(jiǎn)單快捷,實(shí)用性強(qiáng)。下面就讓小編來帶大家學(xué)習(xí)“opencv3/C++中怎么實(shí)現(xiàn)平面對(duì)象識(shí)別和透視變換”吧!
我們提供的服務(wù)有:成都網(wǎng)站設(shè)計(jì)、網(wǎng)站制作、微信公眾號(hào)開發(fā)、網(wǎng)站優(yōu)化、網(wǎng)站認(rèn)證、陽(yáng)西ssl等。為千余家企事業(yè)單位解決了網(wǎng)站和推廣的問題。提供周到的售前咨詢和貼心的售后服務(wù),是有科學(xué)管理、有技術(shù)的陽(yáng)西網(wǎng)站制作公司
findHomography( )
函數(shù)findHomography( )找到兩個(gè)平面之間的透視變換H。
參數(shù)說明:
Mat findHomography( InputArray srcPoints, //原始平面中點(diǎn)的坐標(biāo) InputArray dstPoints, //目標(biāo)平面中點(diǎn)的坐標(biāo) int method = 0, //用于計(jì)算單應(yīng)性矩陣的方法 double ransacReprojThreshold = 3, OutputArray mask=noArray(), //通過魯棒法(RANSAC或LMEDS)設(shè)置的可選輸出掩碼 const int maxIters = 2000, //RANSAC迭代的最大次數(shù),2000是它可以達(dá)到的最大值 const double confidence = 0.995 //置信度 );
用于計(jì)算單應(yīng)性矩陣的方法有:
0 :使用所有點(diǎn)的常規(guī)方法;
RANSAC:基于RANSAC的魯棒法;
LMEDS :最小中值魯棒法;
RHO :基于PROSAC的魯棒法;
被最小化。如果參數(shù)方法被設(shè)置為默認(rèn)值0,則函數(shù)使用所有的點(diǎn)對(duì)以簡(jiǎn)單的最小二乘方案計(jì)算初始單應(yīng)性估計(jì)。
然而,如果不是所有的點(diǎn)對(duì) 都符合剛性透視變換(也就是說有一些異常值),那么這個(gè)初始估計(jì)就會(huì)很差。在這種情況下,可以使用三種魯棒法之一。方法RANSAC,LMeDS和RHO嘗試使用這個(gè)子集和一個(gè)簡(jiǎn)單的最小二乘算法來估計(jì)單應(yīng)矩陣的各個(gè)隨機(jī)子集(每個(gè)子集有四對(duì)),然后計(jì)算計(jì)算的單應(yīng)性的質(zhì)量/良好度(這是RANSAC的內(nèi)點(diǎn)數(shù)或LMeD的中值重投影誤差)。然后使用最佳子集來產(chǎn)生單應(yīng)矩陣的初始估計(jì)和內(nèi)點(diǎn)/外點(diǎn)的掩碼。
不管方法是否魯棒,計(jì)算的單應(yīng)性矩陣都用Levenberg-Marquardt方法進(jìn)一步細(xì)化(僅在魯棒法的情況下使用inlier)以更多地減少再投影誤差。
RANSAC和RHO方法幾乎可以處理任何異常值的比率,但需要一個(gè)閾值來區(qū)分異常值和異常值。 LMeDS方法不需要任何閾值,但只有在超過50%的內(nèi)部值時(shí)才能正常工作。最后,如果沒有異常值且噪聲相當(dāng)小,則使用默認(rèn)方法(method = 0)。
perspectiveTransform()
函數(shù)perspectiveTransform()執(zhí)行矢量的透視矩陣變換。
參數(shù)說明:
void perspectiveTransform( InputArray src, //輸入雙通道或三通道浮點(diǎn)數(shù)組/圖像 OutputArray dst, //輸出與src相同大小和類型的數(shù)組/圖像 InputArray m //3x3或4x4浮點(diǎn)轉(zhuǎn)換矩陣 );
平面對(duì)象識(shí)別:
#include#include using namespace cv; using namespace cv::xfeatures2d; int main() { Mat src1,src2; src1 = imread("E:/image/image/card.jpg"); src2 = imread("E:/image/image/cards.jpg"); if (src1.empty() || src2.empty()) { printf("can ont load images....\n"); return -1; } imshow("image1", src1); imshow("image2", src2); int minHessian = 400; //選擇SURF特征 Ptr detector = SURF::create(minHessian); std::vector keypoints1; std::vector keypoints2; Mat descriptor1, descriptor2; //檢測(cè)關(guān)鍵點(diǎn)并計(jì)算描述符 detector->detectAndCompute(src1, Mat(), keypoints1, descriptor1); detector->detectAndCompute(src2, Mat(), keypoints2, descriptor2); //基于Flann的描述符匹配器 FlannBasedMatcher matcher; std::vector matches; //從查詢集中查找每個(gè)描述符的最佳匹配 matcher.match(descriptor1, descriptor2, matches); double minDist = 1000; double maxDist = 0; for (int i = 0; i < descriptor1.rows; i++) { double dist = matches[i].distance; printf("%f \n", dist); if (dist > maxDist) { maxDist = dist; } if (dist < minDist) { minDist = dist; } } //DMatch類用于匹配關(guān)鍵點(diǎn)描述符的 std::vector goodMatches; for (int i = 0; i < descriptor1.rows; i++) { double dist = matches[i].distance; if (dist < max(2*minDist, 0.02)) { goodMatches.push_back(matches[i]); } } Mat matchesImg; drawMatches(src1, keypoints1, src2, keypoints2, goodMatches, matchesImg, Scalar::all(-1), Scalar::all(-1), std::vector (), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); std::vector point1, point2; for (int i = 0; i < goodMatches.size(); i++) { point1.push_back(keypoints1[goodMatches[i].queryIdx].pt); point2.push_back(keypoints2[goodMatches[i].trainIdx].pt); } Mat H = findHomography(point1, point2, RANSAC); std::vector cornerPoints1(4); std::vector cornerPoints2(4); cornerPoints1[0] = Point(0, 0); cornerPoints1[1] = Point(src1.cols, 0); cornerPoints1[2] = Point(src1.cols, src1.rows); cornerPoints1[3] = Point(0,src1.rows); perspectiveTransform(cornerPoints1, cornerPoints2, H); //繪制出變換后的目標(biāo)輪廓,由于左側(cè)為圖像src2故坐標(biāo)點(diǎn)整體右移src1.cols line(matchesImg, cornerPoints2[0] + Point2f(src1.cols, 0), cornerPoints2[1] + Point2f(src1.cols, 0), Scalar(0,255,255), 4, 8, 0); line(matchesImg, cornerPoints2[1] + Point2f(src1.cols, 0), cornerPoints2[2] + Point2f(src1.cols, 0), Scalar(0,255,255), 4, 8, 0); line(matchesImg, cornerPoints2[2] + Point2f(src1.cols, 0), cornerPoints2[3] + Point2f(src1.cols, 0), Scalar(0,255,255), 4, 8, 0); line(matchesImg, cornerPoints2[3] + Point2f(src1.cols, 0), cornerPoints2[0] + Point2f(src1.cols, 0), Scalar(0,255,255), 4, 8, 0); //在原圖上繪制出變換后的目標(biāo)輪廓 line(src2, cornerPoints2[0], cornerPoints2[1], Scalar(0,255,255), 4, 8, 0); line(src2, cornerPoints2[1], cornerPoints2[2], Scalar(0,255,255), 4, 8, 0); line(src2, cornerPoints2[2], cornerPoints2[3], Scalar(0,255,255), 4, 8, 0); line(src2, cornerPoints2[3], cornerPoints2[0], Scalar(0,255,255), 4, 8, 0); imshow("output", matchesImg); imshow("output2", src2); waitKey(); return 0; }
到此,相信大家對(duì)“opencv3/C++中怎么實(shí)現(xiàn)平面對(duì)象識(shí)別和透視變換”有了更深的了解,不妨來實(shí)際操作一番吧!這里是創(chuàng)新互聯(lián)網(wǎng)站,更多相關(guān)內(nèi)容可以進(jìn)入相關(guān)頻道進(jìn)行查詢,關(guān)注我們,繼續(xù)學(xué)習(xí)!