本篇文章給大家分享的是有關(guān)mac os下如何嘗試編譯 tensorflow,小編覺得挺實(shí)用的,因此分享給大家學(xué)習(xí),希望大家閱讀完這篇文章后可以有所收獲,話不多說,跟著小編一起來看看吧。
創(chuàng)新互聯(lián)公司是一家專注于網(wǎng)站建設(shè)、成都網(wǎng)站設(shè)計(jì)與策劃設(shè)計(jì),皇姑網(wǎng)站建設(shè)哪家好?創(chuàng)新互聯(lián)公司做網(wǎng)站,專注于網(wǎng)站建設(shè)十年,網(wǎng)設(shè)計(jì)領(lǐng)域的專業(yè)建站公司;建站業(yè)務(wù)涵蓋:皇姑等地區(qū)?;使米鼍W(wǎng)站價(jià)格咨詢:13518219792
編譯環(huán)境及其工具
編譯工具:bazel (https://bazel.build/versions/master/docs/bazel-overview.html)
mac 操作系統(tǒng)版本:16.1.0 Darwin Kernel
tensorflow 版本:github 當(dāng)前master分支
編譯操作過程
git clone https://github.com/tensorflow/tensorflow
cd tensorflow
./configure
配置過程沒有使用GPU
bazel build -c opt //tensorflow/tools/pip_package:build_pip_package
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
sudo pip install /tmp/tensorflow_pkg/tensorflow-1.0.1-cp27-cp27m-macosx_10_12_intel.whl
hello world 案例
(dev-djdemo) ? dev-djdemo python
Python 2.7.10 (default, Jul 30 2016, 18:31:42)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.34)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
>>> print(sess.run(hello))
Hello, TensorFlow!
以上就是mac os下如何嘗試編譯 tensorflow,小編相信有部分知識點(diǎn)可能是我們?nèi)粘9ぷ鲿姷交蛴玫降摹OM隳芡ㄟ^這篇文章學(xué)到更多知識。更多詳情敬請關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道。