真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

Java并發(fā)指南13:Java中的HashMap和ConcurrentHashMap全解析

本文轉自: https://www.javadoop.com/

創(chuàng)新互聯(lián)公司服務項目包括青原網(wǎng)站建設、青原網(wǎng)站制作、青原網(wǎng)頁制作以及青原網(wǎng)絡營銷策劃等。多年來,我們專注于互聯(lián)網(wǎng)行業(yè),利用自身積累的技術優(yōu)勢、行業(yè)經(jīng)驗、深度合作伙伴關系等,向廣大中小型企業(yè)、政府機構等提供互聯(lián)網(wǎng)行業(yè)的解決方案,青原網(wǎng)站推廣取得了明顯的社會效益與經(jīng)濟效益。目前,我們服務的客戶以成都為中心已經(jīng)輻射到青原省份的部分城市,未來相信會繼續(xù)擴大服務區(qū)域并繼續(xù)獲得客戶的支持與信任!

本系列文章將整理到我在GitHub上的《Java面試指南》倉庫,更多精彩內(nèi)容請到我的倉庫里查看

https://github.com/h3pl/Java-Tutorial

喜歡的話麻煩點下Star哈

文章同步發(fā)于我的個人博客:

www.how2playlife.com

本文是微信公眾號【Java技術江湖】的《Java并發(fā)指南》其中一篇,本文大部分內(nèi)容來源于網(wǎng)絡,為了把本文主題講得清晰透徹,也整合了很多我認為不錯的技術博客內(nèi)容,引用其中了一些比較好的博客文章,如有侵權,請聯(lián)系作者。

該系列博文會告訴你如何全面深入地學習Java并發(fā)技術,從Java多線程基礎,再到并發(fā)編程的基礎知識,從Java并發(fā)包的入門和實戰(zhàn),再到JUC的源碼剖析,一步步地學習Java并發(fā)編程,并上手進行實戰(zhàn),以便讓你更完整地了解整個Java并發(fā)編程知識體系,形成自己的知識框架。

為了更好地總結和檢驗你的學習成果,本系列文章也會提供一些對應的面試題以及參考答案。

如果對本系列文章有什么建議,或者是有什么疑問的話,也可以關注公眾號【Java技術江湖】聯(lián)系作者,歡迎你參與本系列博文的創(chuàng)作和修訂。

前言

今天發(fā)一篇”水文”,可能很多讀者都會表示不理解,不過我想把它作為并發(fā)序列文章中不可缺少的一塊來介紹。本來以為花不了多少時間的,不過最終還是投入了挺多時間來完成這篇文章的。

網(wǎng)上關于 HashMap 和 ConcurrentHashMap 的文章確實不少,不過缺斤少兩的文章比較多,所以才想自己也寫一篇,把細節(jié)說清楚說透,尤其像 Java8 中的 ConcurrentHashMap,大部分文章都說不清楚。終歸是希望能降低大家學習的成本,不希望大家到處找各種不是很靠譜的文章,看完一篇又一篇,可是還是模模糊糊。

閱讀建議:四節(jié)基本上可以進行獨立閱讀,建議初學者可按照 Java7 HashMap -> Java7 ConcurrentHashMap -> Java8 HashMap -> Java8 ConcurrentHashMap 順序進行閱讀,可適當降低閱讀門檻。

閱讀前提:本文分析的是源碼,所以至少讀者要熟悉它們的接口使用,同時,對于并發(fā),讀者至少要知道 CAS、ReentrantLock、UNSAFE 操作這幾個基本的知識,文中不會對這些知識進行介紹。Java8 用到了紅黑樹,不過本文不會進行展開,感興趣的讀者請自行查找相關資料。

Java7 HashMap

HashMap 是最簡單的,一來我們非常熟悉,二來就是它不支持并發(fā)操作,所以源碼也非常簡單。

首先,我們用下面這張圖來介紹 HashMap 的結構。

Java并發(fā)指南13:Java 中的 HashMap 和 ConcurrentHashMap 全解析

這個僅僅是示意圖,因為沒有考慮到數(shù)組要擴容的情況,具體的后面再說。

大方向上,HashMap 里面是一個 數(shù)組,然后數(shù)組中每個元素是一個 單向鏈表

上圖中,每個綠色的實體是嵌套類 Entry 的實例,Entry 包含四個屬性:key, value, hash 值和用于單向鏈表的 next。

capacity:當前數(shù)組容量,始終保持 2^n,可以擴容,擴容后數(shù)組大小為當前的 2 倍。

loadFactor:負載因子,默認為 0.75。

threshold:擴容的閾值,等于 capacity * loadFactor

put 過程分析

還是比較簡單的,跟著代碼走一遍吧。

public V put(K key, V value) {
    // 當插入第一個元素的時候,需要先初始化數(shù)組大小
    if (table == EMPTY_TABLE) {
        inflateTable(threshold);
    }
    // 如果 key 為 null,感興趣的可以往里看,最終會將這個 entry 放到 table[0] 中
    if (key == null)
        return putForNullKey(value);
    // 1\. 求 key 的 hash 值
    int hash = hash(key);
    // 2\. 找到對應的數(shù)組下標
    int i = indexFor(hash, table.length);
    // 3\. 遍歷一下對應下標處的鏈表,看是否有重復的 key 已經(jīng)存在,
    //    如果有,直接覆蓋,put 方法返回舊值就結束了
    for (Entry e = table[i]; e != null; e = e.next) {
        Object k;
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }
    modCount++;
    // 4\. 不存在重復的 key,將此 entry 添加到鏈表中,細節(jié)后面說
    addEntry(hash, key, value, i);
    return null;
}
數(shù)組初始化

在第一個元素插入 HashMap 的時候做一次數(shù)組的初始化,就是先確定初始的數(shù)組大小,并計算數(shù)組擴容的閾值。

private void inflateTable(int toSize) {
    // 保證數(shù)組大小一定是 2 的 n 次方。
    // 比如這樣初始化:new HashMap(20),那么處理成初始數(shù)組大小是 32
    int capacity = roundUpToPowerOf2(toSize);
    // 計算擴容閾值:capacity * loadFactor
    threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
    // 算是初始化數(shù)組吧
    table = new Entry[capacity];
    initHashSeedAsNeeded(capacity); //ignore
}

這里有一個將數(shù)組大小保持為 2 的 n 次方的做法,Java7 和 Java8 的 HashMap 和 ConcurrentHashMap 都有相應的要求,只不過實現(xiàn)的代碼稍微有些不同,后面再看到的時候就知道了。

計算具體數(shù)組位置

這個簡單,我們自己也能 YY 一個:使用 key 的 hash 值對數(shù)組長度進行取模就可以了。

static int indexFor(int hash, int length) {
    // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
    return hash & (length-1);
}

這個方法很簡單,簡單說就是取 hash 值的低 n 位。如在數(shù)組長度為 32 的時候,其實取的就是 key 的 hash 值的低 5 位,作為它在數(shù)組中的下標位置。

添加節(jié)點到鏈表中

找到數(shù)組下標后,會先進行 key 判重,如果沒有重復,就準備將新值放入到鏈表的 表頭。

void addEntry(int hash, K key, V value, int bucketIndex) {
    // 如果當前 HashMap 大小已經(jīng)達到了閾值,并且新值要插入的數(shù)組位置已經(jīng)有元素了,那么要擴容
    if ((size >= threshold) && (null != table[bucketIndex])) {
        // 擴容,后面會介紹一下
        resize(2 * table.length);
        // 擴容以后,重新計算 hash 值
        hash = (null != key) ? hash(key) : 0;
        // 重新計算擴容后的新的下標
        bucketIndex = indexFor(hash, table.length);
    }
    // 往下看
    createEntry(hash, key, value, bucketIndex);
}
// 這個很簡單,其實就是將新值放到鏈表的表頭,然后 size++
void createEntry(int hash, K key, V value, int bucketIndex) {
    Entry e = table[bucketIndex];
    table[bucketIndex] = new Entry<>(hash, key, value, e);
    size++;
}

這個方法的主要邏輯就是先判斷是否需要擴容,需要的話先擴容,然后再將這個新的數(shù)據(jù)插入到擴容后的數(shù)組的相應位置處的鏈表的表頭。

數(shù)組擴容

前面我們看到,在插入新值的時候,如果 當前的 size 已經(jīng)達到了閾值,并且要插入的數(shù)組位置上已經(jīng)有元素,那么就會觸發(fā)擴容,擴容后,數(shù)組大小為原來的 2 倍。

void resize(int newCapacity) {
    Entry[] oldTable = table;
    int oldCapacity = oldTable.length;
    if (oldCapacity == MAXIMUM_CAPACITY) {
        threshold = Integer.MAX_VALUE;
        return;
    }
    // 新的數(shù)組
    Entry[] newTable = new Entry[newCapacity];
    // 將原來數(shù)組中的值遷移到新的更大的數(shù)組中
    transfer(newTable, initHashSeedAsNeeded(newCapacity));
    table = newTable;
    threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}

擴容就是用一個新的大數(shù)組替換原來的小數(shù)組,并將原來數(shù)組中的值遷移到新的數(shù)組中。

由于是雙倍擴容,遷移過程中,會將原來 table[i] 中的鏈表的所有節(jié)點,分拆到新的數(shù)組的 newTable[i] 和 newTable[i + oldLength] 位置上。如原來數(shù)組長度是 16,那么擴容后,原來 table[0] 處的鏈表中的所有元素會被分配到新數(shù)組中 newTable[0] 和 newTable[16] 這兩個位置。代碼比較簡單,這里就不展開了。

get 過程分析

相對于 put 過程,get 過程是非常簡單的。

  1. 根據(jù) key 計算 hash 值。
  2. 找到相應的數(shù)組下標:hash & (length - 1)。
  3. 遍歷該數(shù)組位置處的鏈表,直到找到相等(==或equals)的 key。
public V get(Object key) {
    // 之前說過,key 為 null 的話,會被放到 table[0],所以只要遍歷下 table[0] 處的鏈表就可以了
    if (key == null)
        return getForNullKey();
    // 
    Entry entry = getEntry(key);
    return null == entry ? null : entry.getValue();
}

getEntry(key):

final Entry getEntry(Object key) {
    if (size == 0) {
        return null;
    }
    int hash = (key == null) ? 0 : hash(key);
    // 確定數(shù)組下標,然后從頭開始遍歷鏈表,直到找到為止
    for (Entry e = table[indexFor(hash, table.length)];
         e != null;
         e = e.next) {
        Object k;
        if (e.hash == hash &&
            ((k = e.key) == key || (key != null && key.equals(k))))
            return e;
    }
    return null;
}

Java7 ConcurrentHashMap

ConcurrentHashMap 和 HashMap 思路是差不多的,但是因為它支持并發(fā)操作,所以要復雜一些。

整個 ConcurrentHashMap 由一個個 Segment 組成,Segment 代表”部分“或”一段“的意思,所以很多地方都會將其描述為 分段鎖。注意,行文中,我很多地方用了“ ”來代表一個 segment。

簡單理解就是,ConcurrentHashMap 是一個 Segment 數(shù)組,Segment 通過繼承 ReentrantLock 來進行加鎖,所以每次需要加鎖的操作鎖住的是一個 segment,這樣只要保證每個 Segment 是線程安全的,也就實現(xiàn)了全局的線程安全。

Java并發(fā)指南13:Java 中的 HashMap 和 ConcurrentHashMap 全解析

concurrencyLevel:并行級別、并發(fā)數(shù)、Segment 數(shù),怎么翻譯不重要,理解它。默認是 16,也就是說 ConcurrentHashMap 有 16 個 Segments,所以理論上,這個時候,最多可以同時支持 16 個線程并發(fā)寫,只要它們的操作分別分布在不同的 Segment 上。這個值可以在初始化的時候設置為其他值,但是一旦初始化以后,它是不可以擴容的。

再具體到每個 Segment 內(nèi)部,其實每個 Segment 很像之前介紹的 HashMap,不過它要保證線程安全,所以處理起來要麻煩些。

初始化

initialCapacity:初始容量,這個值指的是整個 ConcurrentHashMap 的初始容量,實際操作的時候需要平均分給每個 Segment。

loadFactor:負載因子,之前我們說了,Segment 數(shù)組不可以擴容,所以這個負載因子是給每個 Segment 內(nèi)部使用的。

public ConcurrentHashMap(int initialCapacity,
                         float loadFactor, int concurrencyLevel) {
    if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
        throw new IllegalArgumentException();
    if (concurrencyLevel > MAX_SEGMENTS)
        concurrencyLevel = MAX_SEGMENTS;
    // Find power-of-two sizes best matching arguments
    int sshift = 0;
    int ssize = 1;
    // 計算并行級別 ssize,因為要保持并行級別是 2 的 n 次方
    while (ssize < concurrencyLevel) {
        ++sshift;
        ssize <<= 1;
    }
    // 我們這里先不要那么燒腦,用默認值,concurrencyLevel 為 16,sshift 為 4
    // 那么計算出 segmentShift 為 28,segmentMask 為 15,后面會用到這兩個值
    this.segmentShift = 32 - sshift;
    this.segmentMask = ssize - 1;
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    // initialCapacity 是設置整個 map 初始的大小,
    // 這里根據(jù) initialCapacity 計算 Segment 數(shù)組中每個位置可以分到的大小
    // 如 initialCapacity 為 64,那么每個 Segment 或稱之為"槽"可以分到 4 個
    int c = initialCapacity / ssize;
    if (c * ssize < initialCapacity)
        ++c;
    // 默認 MIN_SEGMENT_TABLE_CAPACITY 是 2,這個值也是有講究的,因為這樣的話,對于具體的槽上,
    // 插入一個元素不至于擴容,插入第二個的時候才會擴容
    int cap = MIN_SEGMENT_TABLE_CAPACITY; 
    while (cap < c)
        cap <<= 1;
    // 創(chuàng)建 Segment 數(shù)組,
    // 并創(chuàng)建數(shù)組的第一個元素 segment[0]
    Segment s0 =
        new Segment(loadFactor, (int)(cap * loadFactor),
                         (HashEntry[])new HashEntry[cap]);
    Segment[] ss = (Segment[])new Segment[ssize];
    // 往數(shù)組寫入 segment[0]
    UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
    this.segments = ss;
}

初始化完成,我們得到了一個 Segment 數(shù)組。

我們就當是用 new ConcurrentHashMap() 無參構造函數(shù)進行初始化的,那么初始化完成后:

  • Segment 數(shù)組長度為 16,不可以擴容
  • Segment[i] 的默認大小為 2,負載因子是 0.75,得出初始閾值為 1.5,也就是以后插入第一個元素不會觸發(fā)擴容,插入第二個會進行第一次擴容
  • 這里初始化了 segment[0],其他位置還是 null,至于為什么要初始化 segment[0],后面的代碼會介紹
  • 當前 segmentShift 的值為 32 - 4 = 28,segmentMask 為 16 - 1 = 15,姑且把它們簡單翻譯為 移位數(shù)掩碼,這兩個值馬上就會用到

put 過程分析

我們先看 put 的主流程,對于其中的一些關鍵細節(jié)操作,后面會進行詳細介紹。

public V put(K key, V value) {
    Segment s;
    if (value == null)
        throw new NullPointerException();
    // 1\. 計算 key 的 hash 值
    int hash = hash(key);
    // 2\. 根據(jù) hash 值找到 Segment 數(shù)組中的位置 j
    //    hash 是 32 位,無符號右移 segmentShift(28) 位,剩下高 4 位,
    //    然后和 segmentMask(15) 做一次與操作,也就是說 j 是 hash 值的高 4 位,也就是槽的數(shù)組下標
    int j = (hash >>> segmentShift) & segmentMask;
    // 剛剛說了,初始化的時候初始化了 segment[0],但是其他位置還是 null,
    // ensureSegment(j) 對 segment[j] 進行初始化
    if ((s = (Segment)UNSAFE.getObject          // nonvolatile; recheck
         (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
        s = ensureSegment(j);
    // 3\. 插入新值到 槽 s 中
    return s.put(key, hash, value, false);
}

第一層皮很簡單,根據(jù) hash 值很快就能找到相應的 Segment,之后就是 Segment 內(nèi)部的 put 操作了。

Segment 內(nèi)部是由 數(shù)組+鏈表組成的。

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
    // 在往該 segment 寫入前,需要先獲取該 segment 的獨占鎖
    //    先看主流程,后面還會具體介紹這部分內(nèi)容
    HashEntry node = tryLock() ? null :
        scanAndLockForPut(key, hash, value);
    V oldValue;
    try {
        // 這個是 segment 內(nèi)部的數(shù)組
        HashEntry[] tab = table;
        // 再利用 hash 值,求應該放置的數(shù)組下標
        int index = (tab.length - 1) & hash;
        // first 是數(shù)組該位置處的鏈表的表頭
        HashEntry first = entryAt(tab, index);
        // 下面這串 for 循環(huán)雖然很長,不過也很好理解,想想該位置沒有任何元素和已經(jīng)存在一個鏈表這兩種情況
        for (HashEntry e = first;;) {
            if (e != null) {
                K k;
                if ((k = e.key) == key ||
                    (e.hash == hash && key.equals(k))) {
                    oldValue = e.value;
                    if (!onlyIfAbsent) {
                        // 覆蓋舊值
                        e.value = value;
                        ++modCount;
                    }
                    break;
                }
                // 繼續(xù)順著鏈表走
                e = e.next;
            }
            else {
                // node 到底是不是 null,這個要看獲取鎖的過程,不過和這里都沒有關系。
                // 如果不為 null,那就直接將它設置為鏈表表頭;如果是null,初始化并設置為鏈表表頭。
                if (node != null)
                    node.setNext(first);
                else
                    node = new HashEntry(hash, key, value, first);
                int c = count + 1;
                // 如果超過了該 segment 的閾值,這個 segment 需要擴容
                if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                    rehash(node); // 擴容后面也會具體分析
                else
                    // 沒有達到閾值,將 node 放到數(shù)組 tab 的 index 位置,
                    // 其實就是將新的節(jié)點設置成原鏈表的表頭
                    setEntryAt(tab, index, node);
                ++modCount;
                count = c;
                oldValue = null;
                break;
            }
        }
    } finally {
        // 解鎖
        unlock();
    }
    return oldValue;
}

整體流程還是比較簡單的,由于有獨占鎖的保護,所以 segment 內(nèi)部的操作并不復雜。至于這里面的并發(fā)問題,我們稍后再進行介紹。

到這里 put 操作就結束了,接下來,我們說一說其中幾步關鍵的操作。

初始化槽: ensureSegment

ConcurrentHashMap 初始化的時候會初始化第一個槽 segment[0],對于其他槽來說,在插入第一個值的時候進行初始化。

這里需要考慮并發(fā),因為很可能會有多個線程同時進來初始化同一個槽 segment[k],不過只要有一個成功了就可以。

private Segment ensureSegment(int k) {
    final Segment[] ss = this.segments;
    long u = (k << SSHIFT) + SBASE; // raw offset
    Segment seg;
    if ((seg = (Segment)UNSAFE.getObjectVolatile(ss, u)) == null) {
        // 這里看到為什么之前要初始化 segment[0] 了,
        // 使用當前 segment[0] 處的數(shù)組長度和負載因子來初始化 segment[k]
        // 為什么要用“當前”,因為 segment[0] 可能早就擴容過了
        Segment proto = ss[0];
        int cap = proto.table.length;
        float lf = proto.loadFactor;
        int threshold = (int)(cap * lf);
        // 初始化 segment[k] 內(nèi)部的數(shù)組
        HashEntry[] tab = (HashEntry[])new HashEntry[cap];
        if ((seg = (Segment)UNSAFE.getObjectVolatile(ss, u))
            == null) { // 再次檢查一遍該槽是否被其他線程初始化了。
            Segment s = new Segment(lf, threshold, tab);
            // 使用 while 循環(huán),內(nèi)部用 CAS,當前線程成功設值或其他線程成功設值后,退出
            while ((seg = (Segment)UNSAFE.getObjectVolatile(ss, u))
                   == null) {
                if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
                    break;
            }
        }
    }
    return seg;
}

總的來說,ensureSegment(int k) 比較簡單,對于并發(fā)操作使用 CAS 進行控制。

我沒搞懂這里為什么要搞一個 while 循環(huán),CAS 失敗不就代表有其他線程成功了嗎,為什么要再進行判斷?

感謝評論區(qū)的 李子木,如果當前線程 CAS 失敗,這里的 while 循環(huán)是為了將 seg 賦值返回。

獲取寫入鎖: scanAndLockForPut

前面我們看到,在往某個 segment 中 put 的時候,首先會調(diào)用 node = tryLock() ? null : scanAndLockForPut(key, hash, value),也就是說先進行一次 tryLock() 快速獲取該 segment 的獨占鎖,如果失敗,那么進入到 scanAndLockForPut 這個方法來獲取鎖。

下面我們來具體分析這個方法中是怎么控制加鎖的。

private HashEntry scanAndLockForPut(K key, int hash, V value) {
    HashEntry first = entryForHash(this, hash);
    HashEntry e = first;
    HashEntry node = null;
    int retries = -1; // negative while locating node
    // 循環(huán)獲取鎖
    while (!tryLock()) {
        HashEntry f; // to recheck first below
        if (retries < 0) {
            if (e == null) {
                if (node == null) // speculatively create node
                    // 進到這里說明數(shù)組該位置的鏈表是空的,沒有任何元素
                    // 當然,進到這里的另一個原因是 tryLock() 失敗,所以該槽存在并發(fā),不一定是該位置
                    node = new HashEntry(hash, key, value, null);
                retries = 0;
            }
            else if (key.equals(e.key))
                retries = 0;
            else
                // 順著鏈表往下走
                e = e.next;
        }
        // 重試次數(shù)如果超過 MAX_SCAN_RETRIES(單核1多核64),那么不搶了,進入到阻塞隊列等待鎖
        //    lock() 是阻塞方法,直到獲取鎖后返回
        else if (++retries > MAX_SCAN_RETRIES) {
            lock();
            break;
        }
        else if ((retries & 1) == 0 &&
                 // 這個時候是有大問題了,那就是有新的元素進到了鏈表,成為了新的表頭
                 //     所以這邊的策略是,相當于重新走一遍這個 scanAndLockForPut 方法
                 (f = entryForHash(this, hash)) != first) {
            e = first = f; // re-traverse if entry changed
            retries = -1;
        }
    }
    return node;
}

這個方法有兩個出口,一個是 tryLock() 成功了,循環(huán)終止,另一個就是重試次數(shù)超過了 MAX_SCAN_RETRIES,進到 lock() 方法,此方法會阻塞等待,直到成功拿到獨占鎖。

這個方法就是看似復雜,但是其實就是做了一件事,那就是 獲取該 segment 的獨占鎖,如果需要的話順便實例化了一下 node。

擴容: rehash

重復一下,segment 數(shù)組不能擴容,擴容是 segment 數(shù)組某個位置內(nèi)部的數(shù)組 HashEntry [] 進行擴容,擴容后,容量為原來的 2 倍。

首先,我們要回顧一下觸發(fā)擴容的地方,put 的時候,如果判斷該值的插入會導致該 segment 的元素個數(shù)超過閾值,那么先進行擴容,再插值,讀者這個時候可以回去 put 方法看一眼。

該方法不需要考慮并發(fā),因為到這里的時候,是持有該 segment 的獨占鎖的。

// 方法參數(shù)上的 node 是這次擴容后,需要添加到新的數(shù)組中的數(shù)據(jù)。
private void rehash(HashEntry node) {
    HashEntry[] oldTable = table;
    int oldCapacity = oldTable.length;
    // 2 倍
    int newCapacity = oldCapacity << 1;
    threshold = (int)(newCapacity * loadFactor);
    // 創(chuàng)建新數(shù)組
    HashEntry[] newTable =
        (HashEntry[]) new HashEntry[newCapacity];
    // 新的掩碼,如從 16 擴容到 32,那么 sizeMask 為 31,對應二進制 ‘000...00011111’
    int sizeMask = newCapacity - 1;
    // 遍歷原數(shù)組,老套路,將原數(shù)組位置 i 處的鏈表拆分到 新數(shù)組位置 i 和 i+oldCap 兩個位置
    for (int i = 0; i < oldCapacity ; i++) {
        // e 是鏈表的第一個元素
        HashEntry e = oldTable[i];
        if (e != null) {
            HashEntry next = e.next;
            // 計算應該放置在新數(shù)組中的位置,
            // 假設原數(shù)組長度為 16,e 在 oldTable[3] 處,那么 idx 只可能是 3 或者是 3 + 16 = 19
            int idx = e.hash & sizeMask;
            if (next == null)   // 該位置處只有一個元素,那比較好辦
                newTable[idx] = e;
            else { // Reuse consecutive sequence at same slot
                // e 是鏈表表頭
                HashEntry lastRun = e;
                // idx 是當前鏈表的頭結點 e 的新位置
                int lastIdx = idx;
                // 下面這個 for 循環(huán)會找到一個 lastRun 節(jié)點,這個節(jié)點之后的所有元素是將要放到一起的
                for (HashEntry last = next;
                     last != null;
                     last = last.next) {
                    int k = last.hash & sizeMask;
                    if (k != lastIdx) {
                        lastIdx = k;
                        lastRun = last;
                    }
                }
                // 將 lastRun 及其之后的所有節(jié)點組成的這個鏈表放到 lastIdx 這個位置
                newTable[lastIdx] = lastRun;
                // 下面的操作是處理 lastRun 之前的節(jié)點,
                //    這些節(jié)點可能分配在另一個鏈表中,也可能分配到上面的那個鏈表中
                for (HashEntry p = e; p != lastRun; p = p.next) {
                    V v = p.value;
                    int h = p.hash;
                    int k = h & sizeMask;
                    HashEntry n = newTable[k];
                    newTable[k] = new HashEntry(h, p.key, v, n);
                }
            }
        }
    }
    // 將新來的 node 放到新數(shù)組中剛剛的 兩個鏈表之一 的 頭部
    int nodeIndex = node.hash & sizeMask; // add the new node
    node.setNext(newTable[nodeIndex]);
    newTable[nodeIndex] = node;
    table = newTable;
}

這里的擴容比之前的 HashMap 要復雜一些,代碼難懂一點。上面有兩個挨著的 for 循環(huán),第一個 for 有什么用呢?

仔細一看發(fā)現(xiàn),如果沒有第一個 for 循環(huán),也是可以工作的,但是,這個 for 循環(huán)下來,如果 lastRun 的后面還有比較多的節(jié)點,那么這次就是值得的。因為我們只需要克隆 lastRun 前面的節(jié)點,后面的一串節(jié)點跟著 lastRun 走就是了,不需要做任何操作。

我覺得 Doug Lea 的這個想法也是挺有意思的,不過比較壞的情況就是每次 lastRun 都是鏈表的最后一個元素或者很靠后的元素,那么這次遍歷就有點浪費了。 不過 Doug Lea 也說了,根據(jù)統(tǒng)計,如果使用默認的閾值,大約只有 1/6 的節(jié)點需要克隆。

get 過程分析

相對于 put 來說,get 真的不要太簡單。

  1. 計算 hash 值,找到 segment 數(shù)組中的具體位置,或我們前面用的“槽”
  2. 槽中也是一個數(shù)組,根據(jù) hash 找到數(shù)組中具體的位置
  3. 到這里是鏈表了,順著鏈表進行查找即可
public V get(Object key) {
    Segment s; // manually integrate access methods to reduce overhead
    HashEntry[] tab;
    // 1\. hash 值
    int h = hash(key);
    long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
    // 2\. 根據(jù) hash 找到對應的 segment
    if ((s = (Segment)UNSAFE.getObjectVolatile(segments, u)) != null &&
        (tab = s.table) != null) {
        // 3\. 找到segment 內(nèi)部數(shù)組相應位置的鏈表,遍歷
        for (HashEntry e = (HashEntry) UNSAFE.getObjectVolatile
                 (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
             e != null; e = e.next) {
            K k;
            if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                return e.value;
        }
    }
    return null;
}

并發(fā)問題分析

現(xiàn)在我們已經(jīng)說完了 put 過程和 get 過程,我們可以看到 get 過程中是沒有加鎖的,那自然我們就需要去考慮并發(fā)問題。

添加節(jié)點的操作 put 和刪除節(jié)點的操作 remove 都是要加 segment 上的獨占鎖的,所以它們之間自然不會有問題,我們需要考慮的問題就是 get 的時候在同一個 segment 中發(fā)生了 put 或 remove 操作。

  1. put 操作的線程安全性。

    1. 初始化槽,這個我們之前就說過了,使用了 CAS 來初始化 Segment 中的數(shù)組。
    2. 添加節(jié)點到鏈表的操作是插入到表頭的,所以,如果這個時候 get 操作在鏈表遍歷的過程已經(jīng)到了中間,是不會影響的。當然,另一個并發(fā)問題就是 get 操作在 put 之后,需要保證剛剛插入表頭的節(jié)點被讀取,這個依賴于 setEntryAt 方法中使用的 UNSAFE.putOrderedObject。
    3. 擴容。擴容是新創(chuàng)建了數(shù)組,然后進行遷移數(shù)據(jù),最后面將 newTable 設置給屬性 table。所以,如果 get 操作此時也在進行,那么也沒關系,如果 get 先行,那么就是在舊的 table 上做查詢操作;而 put 先行,那么 put 操作的可見性保證就是 table 使用了 volatile 關鍵字。
  2. remove 操作的線程安全性。

    remove 操作我們沒有分析源碼,所以這里說的讀者感興趣的話還是需要到源碼中去求實一下的。

    get 操作需要遍歷鏈表,但是 remove 操作會”破壞”鏈表。

    如果 remove 破壞的節(jié)點 get 操作已經(jīng)過去了,那么這里不存在任何問題。

    如果 remove 先破壞了一個節(jié)點,分兩種情況考慮。 1、如果此節(jié)點是頭結點,那么需要將頭結點的 next 設置為數(shù)組該位置的元素,table 雖然使用了 volatile 修飾,但是 volatile 并不能提供數(shù)組內(nèi)部操作的可見性保證,所以源碼中使用了 UNSAFE 來操作數(shù)組,請看方法 setEntryAt。2、如果要刪除的節(jié)點不是頭結點,它會將要刪除節(jié)點的后繼節(jié)點接到前驅節(jié)點中,這里的并發(fā)保證就是 next 屬性是 volatile 的。

Java8 HashMap

Java8 對 HashMap 進行了一些修改,最大的不同就是利用了紅黑樹,所以其由 數(shù)組+鏈表+紅黑樹組成。

根據(jù) Java7 HashMap 的介紹,我們知道,查找的時候,根據(jù) hash 值我們能夠快速定位到數(shù)組的具體下標,但是之后的話,需要順著鏈表一個個比較下去才能找到我們需要的,時間復雜度取決于鏈表的長度,為 O(n)。

為了降低這部分的開銷,在 Java8 中,當鏈表中的元素達到了 8 個時,會將鏈表轉換為紅黑樹,在這些位置進行查找的時候可以降低時間復雜度為 O(logN)。

來一張圖簡單示意一下吧:

Java并發(fā)指南13:Java 中的 HashMap 和 ConcurrentHashMap 全解析

注意,上圖是示意圖,主要是描述結構,不會達到這個狀態(tài)的,因為這么多數(shù)據(jù)的時候早就擴容了。

下面,我們還是用代碼來介紹吧,個人感覺,Java8 的源碼可讀性要差一些,不過精簡一些。

Java7 中使用 Entry 來代表每個 HashMap 中的數(shù)據(jù)節(jié)點,Java8 中使用 Node,基本沒有區(qū)別,都是 key,value,hash 和 next 這四個屬性,不過,Node 只能用于鏈表的情況,紅黑樹的情況需要使用 TreeNode

我們根據(jù)數(shù)組元素中,第一個節(jié)點數(shù)據(jù)類型是 Node 還是 TreeNode 來判斷該位置下是鏈表還是紅黑樹的。

put 過程分析

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}
// 第三個參數(shù) onlyIfAbsent 如果是 true,那么只有在不存在該 key 時才會進行 put 操作
// 第四個參數(shù) evict 我們這里不關心
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node[] tab; Node p; int n, i;
    // 第一次 put 值的時候,會觸發(fā)下面的 resize(),類似 java7 的第一次 put 也要初始化數(shù)組長度
    // 第一次 resize 和后續(xù)的擴容有些不一樣,因為這次是數(shù)組從 null 初始化到默認的 16 或自定義的初始容量
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // 找到具體的數(shù)組下標,如果此位置沒有值,那么直接初始化一下 Node 并放置在這個位置就可以了
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {// 數(shù)組該位置有數(shù)據(jù)
        Node e; K k;
        // 首先,判斷該位置的第一個數(shù)據(jù)和我們要插入的數(shù)據(jù),key 是不是"相等",如果是,取出這個節(jié)點
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        // 如果該節(jié)點是代表紅黑樹的節(jié)點,調(diào)用紅黑樹的插值方法,本文不展開說紅黑樹
        else if (p instanceof TreeNode)
            e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
        else {
            // 到這里,說明數(shù)組該位置上是一個鏈表
            for (int binCount = 0; ; ++binCount) {
                // 插入到鏈表的最后面(Java7 是插入到鏈表的最前面)
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    // TREEIFY_THRESHOLD 為 8,所以,如果新插入的值是鏈表中的第 8 個
                    // 會觸發(fā)下面的 treeifyBin,也就是將鏈表轉換為紅黑樹
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                // 如果在該鏈表中找到了"相等"的 key(== 或 equals)
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    // 此時 break,那么 e 為鏈表中[與要插入的新值的 key "相等"]的 node
                    break;
                p = e;
            }
        }
        // e!=null 說明存在舊值的key與要插入的key"相等"
        // 對于我們分析的put操作,下面這個 if 其實就是進行 "值覆蓋",然后返回舊值
        if (e != null) {
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    // 如果 HashMap 由于新插入這個值導致 size 已經(jīng)超過了閾值,需要進行擴容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

和 Java7 稍微有點不一樣的地方就是,Java7 是先擴容后插入新值的,Java8 先插值再擴容,不過這個不重要。

數(shù)組擴容

resize() 方法用于 初始化數(shù)組數(shù)組擴容,每次擴容后,容量為原來的 2 倍,并進行數(shù)據(jù)遷移。

final Node[] resize() {
    Node[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) { // 對應數(shù)組擴容
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 將數(shù)組大小擴大一倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            // 將閾值擴大一倍
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // 對應使用 new HashMap(int initialCapacity) 初始化后,第一次 put 的時候
        newCap = oldThr;
    else {// 對應使用 new HashMap() 初始化后,第一次 put 的時候
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    // 用新的數(shù)組大小初始化新的數(shù)組
    Node[] newTab = (Node[])new Node[newCap];
    table = newTab; // 如果是初始化數(shù)組,到這里就結束了,返回 newTab 即可
    if (oldTab != null) {
        // 開始遍歷原數(shù)組,進行數(shù)據(jù)遷移。
        for (int j = 0; j < oldCap; ++j) {
            Node e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                // 如果該數(shù)組位置上只有單個元素,那就簡單了,簡單遷移這個元素就可以了
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                // 如果是紅黑樹,具體我們就不展開了
                else if (e instanceof TreeNode)
                    ((TreeNode)e).split(this, newTab, j, oldCap);
                else { 
                    // 這塊是處理鏈表的情況,
                    // 需要將此鏈表拆成兩個鏈表,放到新的數(shù)組中,并且保留原來的先后順序
                    // loHead、loTail 對應一條鏈表,hiHead、hiTail 對應另一條鏈表,代碼還是比較簡單的
                    Node loHead = null, loTail = null;
                    Node hiHead = null, hiTail = null;
                    Node next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        // 第一條鏈表
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        // 第二條鏈表的新的位置是 j + oldCap,這個很好理解
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

get 過程分析

相對于 put 來說,get 真的太簡單了。

  1. 計算 key 的 hash 值,根據(jù) hash 值找到對應數(shù)組下標: hash & (length-1)
  2. 判斷數(shù)組該位置處的元素是否剛好就是我們要找的,如果不是,走第三步
  3. 判斷該元素類型是否是 TreeNode,如果是,用紅黑樹的方法取數(shù)據(jù),如果不是,走第四步
  4. 遍歷鏈表,直到找到相等(==或equals)的 key
public V get(Object key) {
    Node e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node getNode(int hash, Object key) {
    Node[] tab; Node first, e; int n; K k;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 判斷第一個節(jié)點是不是就是需要的
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        if ((e = first.next) != null) {
            // 判斷是否是紅黑樹
            if (first instanceof TreeNode)
                return ((TreeNode)first).getTreeNode(hash, key);
            // 鏈表遍歷
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

Java8 ConcurrentHashMap

Java7 中實現(xiàn)的 ConcurrentHashMap 說實話還是比較復雜的,Java8 對 ConcurrentHashMap 進行了比較大的改動。建議讀者可以參考 Java8 中 HashMap 相對于 Java7 HashMap 的改動,對于 ConcurrentHashMap,Java8 也引入了紅黑樹。

說實話,Java8 ConcurrentHashMap 源碼真心不簡單,最難的在于擴容,數(shù)據(jù)遷移操作不容易看懂。

我們先用一個示意圖來描述下其結構:

Java并發(fā)指南13:Java 中的 HashMap 和 ConcurrentHashMap 全解析

結構上和 Java8 的 HashMap 基本上一樣,不過它要保證線程安全性,所以在源碼上確實要復雜一些。

初始化

// 這構造函數(shù)里,什么都不干
public ConcurrentHashMap() {
}
public ConcurrentHashMap(int initialCapacity) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException();
    int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
               MAXIMUM_CAPACITY :
               tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
    this.sizeCtl = cap;
}

這個初始化方法有點意思,通過提供初始容量,計算了 sizeCtl,sizeCtl = 【 (1.5 * initialCapacity + 1),然后向上取最近的 2 的 n 次方】。如 initialCapacity 為 10,那么得到 sizeCtl 為 16,如果 initialCapacity 為 11,得到 sizeCtl 為 32。

sizeCtl 這個屬性使用的場景很多,不過只要跟著文章的思路來,就不會被它搞暈了。

如果你愛折騰,也可以看下另一個有三個參數(shù)的構造方法,這里我就不說了,大部分時候,我們會使用無參構造函數(shù)進行實例化,我們也按照這個思路來進行源碼分析吧。

put 過程分析

仔細地一行一行代碼看下去:

public V put(K key, V value) {
    return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) throw new NullPointerException();
    // 得到 hash 值
    int hash = spread(key.hashCode());
    // 用于記錄相應鏈表的長度
    int binCount = 0;
    for (Node[] tab = table;;) {
        Node f; int n, i, fh;
        // 如果數(shù)組"空",進行數(shù)組初始化
        if (tab == null || (n = tab.length) == 0)
            // 初始化數(shù)組,后面會詳細介紹
            tab = initTable();
        // 找該 hash 值對應的數(shù)組下標,得到第一個節(jié)點 f
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            // 如果數(shù)組該位置為空,
            //    用一次 CAS 操作將這個新值放入其中即可,這個 put 操作差不多就結束了,可以拉到最后面了
            //          如果 CAS 失敗,那就是有并發(fā)操作,進到下一個循環(huán)就好了
            if (casTabAt(tab, i, null,
                         new Node(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        // hash 居然可以等于 MOVED,這個需要到后面才能看明白,不過從名字上也能猜到,肯定是因為在擴容
        else if ((fh = f.hash) == MOVED)
            // 幫助數(shù)據(jù)遷移,這個等到看完數(shù)據(jù)遷移部分的介紹后,再理解這個就很簡單了
            tab = helpTransfer(tab, f);
        else { // 到這里就是說,f 是該位置的頭結點,而且不為空
            V oldVal = null;
            // 獲取數(shù)組該位置的頭結點的監(jiān)視器鎖
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    if (fh >= 0) { // 頭結點的 hash 值大于 0,說明是鏈表
                        // 用于累加,記錄鏈表的長度
                        binCount = 1;
                        // 遍歷鏈表
                        for (Node e = f;; ++binCount) {
                            K ek;
                            // 如果發(fā)現(xiàn)了"相等"的 key,判斷是否要進行值覆蓋,然后也就可以 break 了
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            // 到了鏈表的最末端,將這個新值放到鏈表的最后面
                            Node pred = e;
                            if ((e = e.next) == null) {
                                pred.next = new Node(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    else if (f instanceof TreeBin) { // 紅黑樹
                        Node p;
                        binCount = 2;
                        // 調(diào)用紅黑樹的插值方法插入新節(jié)點
                        if ((p = ((TreeBin)f).putTreeVal(hash, key,
                                                       value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            if (binCount != 0) {
                // 判斷是否要將鏈表轉換為紅黑樹,臨界值和 HashMap 一樣,也是 8
                if (binCount >= TREEIFY_THRESHOLD)
                    // 這個方法和 HashMap 中稍微有一點點不同,那就是它不是一定會進行紅黑樹轉換,
                    // 如果當前數(shù)組的長度小于 64,那么會選擇進行數(shù)組擴容,而不是轉換為紅黑樹
                    //    具體源碼我們就不看了,擴容部分后面說
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    // 
    addCount(1L, binCount);
    return null;
}

put 的主流程看完了,但是至少留下了幾個問題,第一個是初始化,第二個是擴容,第三個是幫助數(shù)據(jù)遷移,這些我們都會在后面進行一一介紹。

初始化數(shù)組:initTable

這個比較簡單,主要就是初始化一個 合適大小的數(shù)組,然后會設置 sizeCtl。

初始化方法中的并發(fā)問題是通過對 sizeCtl 進行一個 CAS 操作來控制的。

private final Node[] initTable() {
    Node[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
        // 初始化的"功勞"被其他線程"搶去"了
        if ((sc = sizeCtl) < 0)
            Thread.yield(); // lost initialization race; just spin
        // CAS 一下,將 sizeCtl 設置為 -1,代表搶到了鎖
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                if ((tab = table) == null || tab.length == 0) {
                    // DEFAULT_CAPACITY 默認初始容量是 16
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    // 初始化數(shù)組,長度為 16 或初始化時提供的長度
                    Node[] nt = (Node[])new Node[n];
                    // 將這個數(shù)組賦值給 table,table 是 volatile 的
                    table = tab = nt;
                    // 如果 n 為 16 的話,那么這里 sc = 12
                    // 其實就是 0.75 * n
                    sc = n - (n >>> 2);
                }
            } finally {
                // 設置 sizeCtl 為 sc,我們就當是 12 吧
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}
鏈表轉紅黑樹: treeifyBin

前面我們在 put 源碼分析也說過,treeifyBin 不一定就會進行紅黑樹轉換,也可能是僅僅做數(shù)組擴容。我們還是進行源碼分析吧。

private final void treeifyBin(Node[] tab, int index) {
    Node b; int n, sc;
    if (tab != null) {
        // MIN_TREEIFY_CAPACITY 為 64
        // 所以,如果數(shù)組長度小于 64 的時候,其實也就是 32 或者 16 或者更小的時候,會進行數(shù)組擴容
        if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
            // 后面我們再詳細分析這個方法
            tryPresize(n << 1);
        // b 是頭結點
        else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
            // 加鎖
            synchronized (b) {
                if (tabAt(tab, index) == b) {
                    // 下面就是遍歷鏈表,建立一顆紅黑樹
                    TreeNode hd = null, tl = null;
                    for (Node e = b; e != null; e = e.next) {
                        TreeNode p =
                            new TreeNode(e.hash, e.key, e.val,
                                              null, null);
                        if ((p.prev = tl) == null)
                            hd = p;
                        else
                            tl.next = p;
                        tl = p;
                    }
                    // 將紅黑樹設置到數(shù)組相應位置中
                    setTabAt(tab, index, new TreeBin(hd));
                }
            }
        }
    }
}

擴容:tryPresize

如果說 Java8 ConcurrentHashMap 的源碼不簡單,那么說的就是擴容操作和遷移操作。

這個方法要完完全全看懂還需要看之后的 transfer 方法,讀者應該提前知道這點。

這里的擴容也是做翻倍擴容的,擴容后數(shù)組容量為原來的 2 倍。

// 首先要說明的是,方法參數(shù) size 傳進來的時候就已經(jīng)翻了倍了
private final void tryPresize(int size) {
    // c:size 的 1.5 倍,再加 1,再往上取最近的 2 的 n 次方。
    int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
        tableSizeFor(size + (size >>> 1) + 1);
    int sc;
    while ((sc = sizeCtl) >= 0) {
        Node[] tab = table; int n;
        // 這個 if 分支和之前說的初始化數(shù)組的代碼基本上是一樣的,在這里,我們可以不用管這塊代碼
        if (tab == null || (n = tab.length) == 0) {
            n = (sc > c) ? sc : c;
            if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    if (table == tab) {
                        @SuppressWarnings("unchecked")
                        Node[] nt = (Node[])new Node[n];
                        table = nt;
                        sc = n - (n >>> 2); // 0.75 * n
                    }
                } finally {
                    sizeCtl = sc;
                }
            }
        }
        else if (c <= sc || n >= MAXIMUM_CAPACITY)
            break;
        else if (tab == table) {
            // 我沒看懂 rs 的真正含義是什么,不過也關系不大
            int rs = resizeStamp(n);
            if (sc < 0) {
                Node[] nt;
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                // 2\. 用 CAS 將 sizeCtl 加 1,然后執(zhí)行 transfer 方法
                //    此時 nextTab 不為 null
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            // 1\. 將 sizeCtl 設置為 (rs << RESIZE_STAMP_SHIFT) + 2)
            //     我是沒看懂這個值真正的意義是什么?不過可以計算出來的是,結果是一個比較大的負數(shù)
            //  調(diào)用 transfer 方法,此時 nextTab 參數(shù)為 null
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                         (rs << RESIZE_STAMP_SHIFT) + 2))
                transfer(tab, null);
        }
    }
}

這個方法的核心在于 sizeCtl 值的操作,首先將其設置為一個負數(shù),然后執(zhí)行 transfer(tab, null),再下一個循環(huán)將 sizeCtl 加 1,并執(zhí)行 transfer(tab, nt),之后可能是繼續(xù) sizeCtl 加 1,并執(zhí)行 transfer(tab, nt)。

所以,可能的操作就是執(zhí)行 1 次 transfer(tab, null) + 多次 transfer(tab, nt),這里怎么結束循環(huán)的需要看完 transfer 源碼才清楚。

數(shù)據(jù)遷移:transfer

下面這個方法有點長,將原來的 tab 數(shù)組的元素遷移到新的 nextTab 數(shù)組中。

雖然我們之前說的 tryPresize 方法中多次調(diào)用 transfer 不涉及多線程,但是這個 transfer 方法可以在其他地方被調(diào)用,典型地,我們之前在說 put 方法的時候就說過了,請往上看 put 方法,是不是有個地方調(diào)用了 helpTransfer 方法,helpTransfer 方法會調(diào)用 transfer 方法的。

此方法支持多線程執(zhí)行,外圍調(diào)用此方法的時候,會保證第一個發(fā)起數(shù)據(jù)遷移的線程,nextTab 參數(shù)為 null,之后再調(diào)用此方法的時候,nextTab 不會為 null。

閱讀源碼之前,先要理解并發(fā)操作的機制。原數(shù)組長度為 n,所以我們有 n 個遷移任務,讓每個線程每次負責一個小任務是最簡單的,每做完一個任務再檢測是否有其他沒做完的任務,幫助遷移就可以了,而 Doug Lea 使用了一個 stride,簡單理解就是 步長,每個線程每次負責遷移其中的一部分,如每次遷移 16 個小任務。所以,我們就需要一個全局的調(diào)度者來安排哪個線程執(zhí)行哪幾個任務,這個就是屬性 transferIndex 的作用。

第一個發(fā)起數(shù)據(jù)遷移的線程會將 transferIndex 指向原數(shù)組最后的位置,然后 從后往前的 stride 個任務屬于第一個線程,然后將 transferIndex 指向新的位置,再往前的 stride 個任務屬于第二個線程,依此類推。當然,這里說的第二個線程不是真的一定指代了第二個線程,也可以是同一個線程,這個讀者應該能理解吧。其實就是將一個大的遷移任務分為了一個個任務包。

private final void transfer(Node[] tab, Node[] nextTab) {
    int n = tab.length, stride;
    // stride 在單核下直接等于 n,多核模式下為 (n>>>3)/NCPU,最小值是 16
    // stride 可以理解為”步長“,有 n 個位置是需要進行遷移的,
    //   將這 n 個任務分為多個任務包,每個任務包有 stride 個任務
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; // subdivide range
    // 如果 nextTab 為 null,先進行一次初始化
    //    前面我們說了,外圍會保證第一個發(fā)起遷移的線程調(diào)用此方法時,參數(shù) nextTab 為 null
    //       之后參與遷移的線程調(diào)用此方法時,nextTab 不會為 null
    if (nextTab == null) {
        try {
            // 容量翻倍
            Node[] nt = (Node[])new Node[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {      // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        // nextTable 是 ConcurrentHashMap 中的屬性
        nextTable = nextTab;
        // transferIndex 也是 ConcurrentHashMap 的屬性,用于控制遷移的位置
        transferIndex = n;
    }
    int nextn = nextTab.length;
    // ForwardingNode 翻譯過來就是正在被遷移的 Node
    // 這個構造方法會生成一個Node,key、value 和 next 都為 null,關鍵是 hash 為 MOVED
    // 后面我們會看到,原數(shù)組中位置 i 處的節(jié)點完成遷移工作后,
    //    就會將位置 i 處設置為這個 ForwardingNode,用來告訴其他線程該位置已經(jīng)處理過了
    //    所以它其實相當于是一個標志。
    ForwardingNode fwd = new ForwardingNode(nextTab);
    // advance 指的是做完了一個位置的遷移工作,可以準備做下一個位置的了
    boolean advance = true;
    boolean finishing = false; // to ensure sweep before committing nextTab
    /*
     * 下面這個 for 循環(huán),最難理解的在前面,而要看懂它們,應該先看懂后面的,然后再倒回來看
     * 
     */
    // i 是位置索引,bound 是邊界,注意是從后往前
    for (int i = 0, bound = 0;;) {
        Node f; int fh;
        // 下面這個 while 真的是不好理解
        // advance 為 true 表示可以進行下一個位置的遷移了
        //   簡單理解結局:i 指向了 transferIndex,bound 指向了 transferIndex-stride
        while (advance) {
            int nextIndex, nextBound;
            if (--i >= bound || finishing)
                advance = false;
            // 將 transferIndex 值賦給 nextIndex
            // 這里 transferIndex 一旦小于等于 0,說明原數(shù)組的所有位置都有相應的線程去處理了
            else if ((nextIndex = transferIndex) <= 0) {
                i = -1;
                advance = false;
            }
            else if (U.compareAndSwapInt
                     (this, TRANSFERINDEX, nextIndex,
                      nextBound = (nextIndex > stride ?
                                   nextIndex - stride : 0))) {
                // 看括號中的代碼,nextBound 是這次遷移任務的邊界,注意,是從后往前
                bound = nextBound;
                i = nextIndex - 1;
                advance = false;
            }
        }
        if (i < 0 || i >= n || i + n >= nextn) {
            int sc;
            if (finishing) {
                // 所有的遷移操作已經(jīng)完成
                nextTable = null;
                // 將新的 nextTab 賦值給 table 屬性,完成遷移
                table = nextTab;
                // 重新計算 sizeCtl:n 是原數(shù)組長度,所以 sizeCtl 得出的值將是新數(shù)組長度的 0.75 倍
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }
            // 之前我們說過,sizeCtl 在遷移前會設置為 (rs << RESIZE_STAMP_SHIFT) + 2
            // 然后,每有一個線程參與遷移就會將 sizeCtl 加 1,
            // 這里使用 CAS 操作對 sizeCtl 進行減 1,代表做完了屬于自己的任務
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                // 任務結束,方法退出
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                    return;
                // 到這里,說明 (sc - 2) == resizeStamp(n) << RESIZE_STAMP_SHIFT,
                // 也就是說,所有的遷移任務都做完了,也就會進入到上面的 if(finishing){} 分支了
                finishing = advance = true;
                i = n; // recheck before commit
            }
        }
        // 如果位置 i 處是空的,沒有任何節(jié)點,那么放入剛剛初始化的 ForwardingNode ”空節(jié)點“
        else if ((f = tabAt(tab, i)) == null)
            advance = casTabAt(tab, i, null, fwd);
        // 該位置處是一個 ForwardingNode,代表該位置已經(jīng)遷移過了
        else if ((fh = f.hash) == MOVED)
            advance = true; // already processed
        else {
            // 對數(shù)組該位置處的結點加鎖,開始處理數(shù)組該位置處的遷移工作
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    Node ln, hn;
                    // 頭結點的 hash 大于 0,說明是鏈表的 Node 節(jié)點
                    if (fh >= 0) {
                        // 下面這一塊和 Java7 中的 ConcurrentHashMap 遷移是差不多的,
                        // 需要將鏈表一分為二,
                        //   找到原鏈表中的 lastRun,然后 lastRun 及其            
            
                        
網(wǎng)頁題目:Java并發(fā)指南13:Java中的HashMap和ConcurrentHashMap全解析
本文網(wǎng)址:http://weahome.cn/article/jsijgh.html

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部