這篇文章給大家分享的是有關(guān)pandas中Dataframe查詢方法的示例分析的內(nèi)容。小編覺(jué)得挺實(shí)用的,因此分享給大家做個(gè)參考,一起跟隨小編過(guò)來(lái)看看吧。
創(chuàng)新互聯(lián)公司專注于江城企業(yè)網(wǎng)站建設(shè),響應(yīng)式網(wǎng)站設(shè)計(jì),商城網(wǎng)站開(kāi)發(fā)。江城網(wǎng)站建設(shè)公司,為江城等地區(qū)提供建站服務(wù)。全流程按需網(wǎng)站建設(shè),專業(yè)設(shè)計(jì),全程項(xiàng)目跟蹤,創(chuàng)新互聯(lián)公司專業(yè)和態(tài)度為您提供的服務(wù)數(shù)據(jù)介紹
先隨機(jī)生成一組數(shù)據(jù):
In [5]: rnd_1 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_2 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_3 = [random.randrange(1,20) for x in xrange(1000)] ...: fecha = pd.date_range('2012-4-10', '2015-1-4') ...: ...: data = pd.DataFrame({'fecha':fecha, 'rnd_1': rnd_1, 'rnd_2': rnd_2, 'rnd_3': rnd_3}) In [6]: data.describe() Out[6]: rnd_1 rnd_2 rnd_3 count 1000.000000 1000.000000 1000.000000 mean 9.946000 9.825000 9.894000 std 5.553911 5.559432 5.423484 min 1.000000 1.000000 1.000000 25% 5.000000 5.000000 5.000000 50% 10.000000 10.000000 10.000000 75% 15.000000 15.000000 14.000000 max 19.000000 19.000000 19.000000
[]切片方法
使用方括號(hào)能夠?qū)ataFrame進(jìn)行切片,有點(diǎn)類似于python的列表切片。按照索引能夠?qū)崿F(xiàn)行選擇或列選擇或區(qū)塊選擇。
# 行選擇 In [7]: data[1:5] Out[7]: fecha rnd_1 rnd_2 rnd_3 1 2012-04-11 1 16 3 2 2012-04-12 7 6 1 3 2012-04-13 2 16 7 4 2012-04-14 4 17 7 # 列選擇 In [10]: data[['rnd_1', 'rnd_3']] Out[10]: rnd_1 rnd_3 0 8 12 1 1 3 2 7 1 3 2 7 4 4 7 5 12 8 6 2 12 7 9 8 8 13 17 9 4 7 10 14 14 11 19 16 12 2 12 13 15 18 14 13 18 15 13 11 16 17 7 17 14 10 18 9 6 19 11 15 20 16 13 21 18 9 22 1 18 23 4 3 24 6 11 25 2 13 26 7 17 27 11 8 28 3 12 29 4 2 .. ... ... 970 8 14 971 19 5 972 13 2 973 8 10 974 8 17 975 6 16 976 3 2 977 12 6 978 12 10 979 15 13 980 8 4 981 17 3 982 1 17 983 11 5 984 7 7 985 13 14 986 6 19 987 13 9 988 3 15 989 19 6 990 7 11 991 11 7 992 19 12 993 2 15 994 10 4 995 14 13 996 12 11 997 11 15 998 17 14 999 3 8 [1000 rows x 2 columns] # 區(qū)塊選擇 In [11]: data[:7][['rnd_1', 'rnd_2']] Out[11]: rnd_1 rnd_2 0 8 17 1 1 16 2 7 6 3 2 16 4 4 17 5 12 19 6 2 7
不過(guò)對(duì)于多列選擇,不能像行選擇時(shí)一樣使用1:5這樣的方法來(lái)選擇。
In [12]: data[['rnd_1':'rnd_3']] File "", line 1 data[['rnd_1':'rnd_3']] ^ SyntaxError: invalid syntax
loc
loc可以讓你按照索引來(lái)進(jìn)行行列選擇。
In [13]: data.loc[1:5] Out[13]: fecha rnd_1 rnd_2 rnd_3 1 2012-04-11 1 16 3 2 2012-04-12 7 6 1 3 2012-04-13 2 16 7 4 2012-04-14 4 17 7 5 2012-04-15 12 19 8
這里需要注意的是,loc與第一種方法不同之處在于會(huì)把第5行也選擇進(jìn)去,而第一種方法只會(huì)選擇到第4行為止。
data.loc[2:4, ['rnd_2', 'fecha']] Out[14]: rnd_2 fecha 2 6 2012-04-12 3 16 2012-04-13 4 17 2012-04-14
loc能夠選擇在兩個(gè)特定日期之間的數(shù)據(jù),需要注意的是這兩個(gè)日期必須都要在索引中。
In [15]: data_fecha = data.set_index('fecha') ...: data_fecha.head() Out[15]: rnd_1 rnd_2 rnd_3 fecha 2012-04-10 8 17 12 2012-04-11 1 16 3 2012-04-12 7 6 1 2012-04-13 2 16 7 2012-04-14 4 17 7 In [16]: # 生成兩個(gè)特定日期 ...: fecha_1 = dt.datetime(2013, 4, 14) ...: fecha_2 = dt.datetime(2013, 4, 18) ...: ...: # 生成切片數(shù)據(jù) ...: data_fecha.loc[fecha_1: fecha_2] Out[16]: rnd_1 rnd_2 rnd_3 fecha 2013-04-14 17 10 5 2013-04-15 14 4 9 2013-04-16 1 2 18 2013-04-17 9 15 1 2013-04-18 16 7 17
更新:如果沒(méi)有特殊需求,強(qiáng)烈建議使用loc而盡量少使用[],因?yàn)閘oc在對(duì)DataFrame進(jìn)行重新賦值操作時(shí)會(huì)避免chained indexing問(wèn)題,使用[]時(shí)編譯器很可能會(huì)給出SettingWithCopy的警告。
具體可以參見(jiàn)官方文檔:http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
iloc
如果說(shuō)loc是按照索引(index)的值來(lái)選取的話,那么iloc就是按照索引的位置來(lái)進(jìn)行選取。iloc不關(guān)心索引的具體值是多少,只關(guān)心位置是多少,所以使用iloc時(shí)方括號(hào)中只能使用數(shù)值。
# 行選擇 In [17]: data_fecha[10: 15] Out[17]: rnd_1 rnd_2 rnd_3 fecha 2012-04-20 14 6 14 2012-04-21 19 14 16 2012-04-22 2 6 12 2012-04-23 15 8 18 2012-04-24 13 8 18 # 列選擇 In [18]: data_fecha.iloc[:,[1,2]].head() Out[18]: rnd_2 rnd_3 fecha 2012-04-10 17 12 2012-04-11 16 3 2012-04-12 6 1 2012-04-13 16 7 2012-04-14 17 7 # 切片選擇 In [19]: data_fecha.iloc[[1,12,34],[0,2]] Out[19]: rnd_1 rnd_3 fecha 2012-04-11 1 3 2012-04-22 2 12 2012-05-14 17 10
at
at的使用方法與loc類似,但是比loc有更快的訪問(wèn)數(shù)據(jù)的速度,而且只能訪問(wèn)單個(gè)元素,不能訪問(wèn)多個(gè)元素。
In [20]: timeit data_fecha.at[fecha_1,'rnd_1'] The slowest run took 3783.11 times longer than the fastest. This could mean that an intermediate result is being cached. 100000 loops, best of 3: 11.3 µs per loop In [21]: timeit data_fecha.loc[fecha_1,'rnd_1'] The slowest run took 121.24 times longer than the fastest. This could mean that an intermediate result is being cached. 10000 loops, best of 3: 192 µs per loop In [22]: data_fecha.at[fecha_1,'rnd_1'] Out[22]: 17
iat
iat對(duì)于iloc的關(guān)系就像at對(duì)于loc的關(guān)系,是一種更快的基于索引位置的選擇方法,同at一樣只能訪問(wèn)單個(gè)元素。
In [23]: data_fecha.iat[1,0] Out[23]: 1 In [24]: timeit data_fecha.iat[1,0] The slowest run took 6.23 times longer than the fastest. This could mean that an intermediate result is being cached. 100000 loops, best of 3: 8.77 µs per loop In [25]: timeit data_fecha.iloc[1,0] 10000 loops, best of 3: 158 µs per loop
ix
以上說(shuō)過(guò)的幾種方法都要求查詢的秩在索引中,或者位置不超過(guò)長(zhǎng)度范圍,而ix允許你得到不在DataFrame索引中的數(shù)據(jù)。
In [28]: date_1 = dt.datetime(2013, 1, 10, 8, 30) ...: date_2 = dt.datetime(2013, 1, 13, 4, 20) ...: ...: # 生成切片數(shù)據(jù) ...: data_fecha.ix[date_1: date_2] Out[28]: rnd_1 rnd_2 rnd_3 fecha 2013-01-11 19 17 19 2013-01-12 10 9 17 2013-01-13 15 3 10
如上面的例子所示,2013年1月10號(hào)并沒(méi)有被選擇進(jìn)去,因?yàn)檫@個(gè)時(shí)間點(diǎn)被看作為0點(diǎn)0分,比8點(diǎn)30分要早一些。
感謝各位的閱讀!關(guān)于“pandas中Dataframe查詢方法的示例分析”這篇文章就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,讓大家可以學(xué)到更多知識(shí),如果覺(jué)得文章不錯(cuò),可以把它分享出去讓更多的人看到吧!
另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無(wú)理由+7*72小時(shí)售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國(guó)服務(wù)器、虛擬主機(jī)、免備案服務(wù)器”等云主機(jī)租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡(jiǎn)單易用、服務(wù)可用性高、性價(jià)比高”等特點(diǎn)與優(yōu)勢(shì),專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場(chǎng)景需求。