真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

numpy中matrix矩陣對(duì)象有什么用

這篇文章主要為大家展示了“ numpy中matrix矩陣對(duì)象有什么用”,內(nèi)容簡(jiǎn)而易懂,條理清晰,希望能夠幫助大家解決疑惑,下面讓小編帶領(lǐng)大家一起研究并學(xué)習(xí)一下“ numpy中matrix矩陣對(duì)象有什么用”這篇文章吧。

創(chuàng)新互聯(lián)主要從事成都網(wǎng)站建設(shè)、成都做網(wǎng)站、網(wǎng)頁(yè)設(shè)計(jì)、企業(yè)做網(wǎng)站、公司建網(wǎng)站等業(yè)務(wù)。立足成都服務(wù)威縣,十年網(wǎng)站建設(shè)經(jīng)驗(yàn),價(jià)格優(yōu)惠、服務(wù)專(zhuān)業(yè),歡迎來(lái)電咨詢(xún)建站服務(wù):18982081108

1.簡(jiǎn)介
Matrix類(lèi)型繼承于ndarray類(lèi)型,因此含有ndarray的所有數(shù)據(jù)屬性和方法。Matrix類(lèi)型與ndarray類(lèi)型有六個(gè)重要的不同點(diǎn),當(dāng)你當(dāng)Matrix對(duì)象當(dāng)arrays操作時(shí),這些不同點(diǎn)會(huì)導(dǎo)致非預(yù)期的結(jié)果。

1)Matrix對(duì)象可以使用一個(gè)Matlab風(fēng)格的字符串來(lái)創(chuàng)建,也就是一個(gè)以空格分隔列,以分號(hào)分隔行的字符串。

2)Matrix對(duì)象總是二維的。這包含有深遠(yuǎn)的影響,比如m.ravel()的返回值是二維的,成員選擇的返回值也是二維的,因此序列的行為與array會(huì)有本質(zhì)的不同。

3)Matrix類(lèi)型的乘法覆蓋了array的乘法,使用的是矩陣的乘法運(yùn)算。當(dāng)你接收矩陣的返回值的時(shí)候,確保你已經(jīng)理解這些函數(shù)的含義。特別地,事實(shí)上函數(shù)asanyarray(m)會(huì)返回一個(gè)matrix,如果m是一個(gè)matrix。

4)Matrix類(lèi)型的冪運(yùn)算也覆蓋了之前的冪運(yùn)算,使用矩陣的冪。根據(jù)這個(gè)事實(shí),再提醒一下,如果使用一個(gè)矩陣的冪作為參數(shù)調(diào)用asanarray(…)跟上面的相同。

5)矩陣默認(rèn)的array_priority是10.0,因而ndarray和matrix對(duì)象混合的運(yùn)算總是返回矩陣。

6)矩陣有幾個(gè)特有的屬性使得計(jì)算更加容易,這些屬性有:

(a) .T -- 返回自身的轉(zhuǎn)置

(b) .H -- 返回自身的共軛轉(zhuǎn)置

(c) .I -- 返回自身的逆矩陣

(d) .A -- 返回自身數(shù)據(jù)的2維數(shù)組的一個(gè)視圖(沒(méi)有做任何的拷貝)

Matrix對(duì)象也可以使用其它的Matrix對(duì)象,字符串,或者其它的可以轉(zhuǎn)換為一個(gè)ndarray的參數(shù)來(lái)構(gòu)造。另外,在NumPy里,“mat”是“matrix”的一個(gè)別名。
1)通過(guò)字符串創(chuàng)建矩陣

>>> a=np.mat('1 2 3; 4 5 3')
>>> print (a*a.T).I[[ 0.2924 -0.1345] [-0.1345 0.0819]]

2)通過(guò)嵌套列表創(chuàng)建矩陣

>>> mp.mat([[1,5,10],[1.0,3,4j]])
matrix([[ 1.+0.j, 5.+0.j, 10.+0.j], [ 1.+0.j, 3.+0.j, 0.+4.j]])

3)通過(guò)數(shù)組創(chuàng)建矩陣

>>> np.mat(random.rand(3,3)).T
matrix([[ 0.7699, 0.7922, 0.3294], [ 0.2792, 0.0101, 0.9219], [ 0.3398, 0.7571, 0.8197]])

2.屬性與描述

namedescripe
AReturn self as an ndarray object.
A1Return self as a flattened ndarray.
HReturns the (complex) conjugate transpose of self.
IReturns the (multiplicative) inverse of invertible self.
TReturns the transpose of the matrix.
baseBase object if memory is from some other object.
ctypesAn object to simplify the interaction of the array with the ctypes module.
dataPython buffer object pointing to the start of the array’s data.
dtypeData-type of the array’s elements.
flagsInformation about the memory layout of the array.
flatA 1-D iterator over the array.
imagThe imaginary part of the array.
itemsizeLength of one array element in bytes.
nbytesTotal bytes consumed by the elements of the array.
ndimNumber of array dimensions.
realThe real part of the array.
shapeTuple of array dimensions.
sizeNumber of elements in the array.
stridesTuple of bytes to step in each dimension when traversing an array.

3.方法與描述

namedescribe
all([axis, out])Test whether all matrix elements along a given axis evaluate to True.
any([axis, out])Test whether any array element along a given axis evaluates to True.
argmax([axis, out])Indexes of the maximum values along an axis.
argmin([axis, out])Indexes of the minimum values along an axis.
argpartition(kth[, axis, kind, order])Returns the indices that would partition this array.
argsort([axis, kind, order])Returns the indices that would sort this array.
astype(dtype[, order, casting, subok, copy])Copy of the array, cast to a specified type.
byteswap(inplace)Swap the bytes of the array elements
choose(choices[, out, mode])Use an index array to construct a new array from a set of choices.
clip([min, max, out])Return an array whose values are limited to [min, max].
compress(condition[, axis, out])Return selected slices of this array along given axis.
conj()Complex-conjugate all elements.
conjugate()Return the complex conjugate, element-wise.
copy([order])Return a copy of the array.
cumprod([axis, dtype, out])Return the cumulative product of the elements along the given axis.
cumsum([axis, dtype, out])Return the cumulative sum of the elements along the given axis.
diagonal([offset, axis1, axis2])Return specified diagonals.
dot(b[, out])Dot product of two arrays.
dump(file)Dump a pickle of the array to the specified file.
dumps()Returns the pickle of the array as a string.
fill(value)Fill the array with a scalar value.
flatten([order])Return a flattened copy of the matrix.
getA()Return self as an ndarray object.
getA1()Return self as a flattened ndarray.
getH()Returns the (complex) conjugate transpose of self.
getI()Returns the (multiplicative) inverse of invertible self.
getT()Returns the transpose of the matrix.
getfield(dtype[, offset])Returns a field of the given array as a certain type.
item(*args)Copy an element of an array to a standard Python scalar and return it.
itemset(*args)Insert scalar into an array (scalar is cast to array’s dtype, if possible)
max([axis, out])Return the maximum value along an axis.
mean([axis, dtype, out])Returns the average of the matrix elements along the given axis.
min([axis, out])Return the minimum value along an axis.
newbyteorder([new_order])Return the array with the same data viewed with a different byte order.
nonzero()Return the indices of the elements that are non-zero.
partition(kth[, axis, kind, order])Rearranges the elements in the array in such a way that value of the element in kth position prod([axis, dtype, out]) Return the product of the array elements over the given axis.
ptp([axis, out])Peak-to-peak (maximum - minimum) value along the given axis.
put(indices, values[, mode])Set a.flat[n] = values[n] for all n in indices.
ravel([order])Return a flattened matrix.
repeat(repeats[, axis])Repeat elements of an array.
reshape(shape[, order])Returns an array containing the same data with a new shape.
resize(new_shape[, refcheck])Change shape and size of array in-place.
round([decimals, out])Return a with each element rounded to the given number of decimals.
searchsorted(v[, side, sorter])Find indices where elements of v should be inserted in a to maintain order.
setfield(val, dtype[, offset])Put a value into a specified place in a field defined by a data-type.
setflags([write, align, uic])Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.
sort([axis, kind, order])Sort an array, in-place.
squeeze([axis])Return a possibly reshaped matrix.
std([axis, dtype, out, ddof])Return the standard deviation of the array elements along the given axis.
sum([axis, dtype, out])Returns the sum of the matrix elements, along the given axis.
swapaxes(axis1, axis2)Return a view of the array with axis1 and axis2 interchanged.
take(indices[, axis, out, mode])Return an array formed from the elements of a at the given indices.
tobytes([order])Construct Python bytes containing the raw data bytes in the array.
tofile(fid[, sep, format])Write array to a file as text or binary (default).
tolist()Return the matrix as a (possibly nested) list.
tostring([order])Construct Python bytes containing the raw data bytes in the array.
trace([offset, axis1, axis2, dtype, out])Return the sum along diagonals of the array.
transpose(*axes)Returns a view of the array with axes transposed.
var([axis, dtype, out, ddof])Returns the variance of the matrix elements, along the given axis.
view([dtype, type])New view of array with the same data.


以上是“ numpy中matrix矩陣對(duì)象有什么用”這篇文章的所有內(nèi)容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內(nèi)容對(duì)大家有所幫助,如果還想學(xué)習(xí)更多知識(shí),歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道!


網(wǎng)站題目:numpy中matrix矩陣對(duì)象有什么用
鏈接地址:http://weahome.cn/article/jssioi.html

其他資訊

在線(xiàn)咨詢(xún)

微信咨詢(xún)

電話(huà)咨詢(xún)

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部