這篇文章主要介紹“Python中快的循環(huán)方式有哪些”,在日常操作中,相信很多人在Python中快的循環(huán)方式有哪些問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對(duì)大家解答”Python中快的循環(huán)方式有哪些”的疑惑有所幫助!接下來,請(qǐng)跟著小編一起來學(xué)習(xí)吧!
創(chuàng)新互聯(lián)建站堅(jiān)持“要么做到,要么別承諾”的工作理念,服務(wù)領(lǐng)域包括:成都網(wǎng)站設(shè)計(jì)、成都網(wǎng)站制作、外貿(mào)網(wǎng)站建設(shè)、企業(yè)官網(wǎng)、英文網(wǎng)站、手機(jī)端網(wǎng)站、網(wǎng)站推廣等服務(wù),滿足客戶于互聯(lián)網(wǎng)時(shí)代的安龍網(wǎng)站設(shè)計(jì)、移動(dòng)媒體設(shè)計(jì)的需求,幫助企業(yè)找到有效的互聯(lián)網(wǎng)解決方案。努力成為您成熟可靠的網(wǎng)絡(luò)建設(shè)合作伙伴!
比如說有一個(gè)簡單的任務(wù),就是從 1 累加到 1 億,我們至少可以有 7 種方法來實(shí)現(xiàn),列舉如下:
def while_loop(n=100_000_000): i = 0 s = 0 while i < n: s += i i += 1 return s
def for_loop(n=100_000_000): s = 0 for i in range(n): s += i return s
def sum_range(n=100_000_000): return sum(range(n))
def sum_generator(n=100_000_000): return sum(i for i in range(n))
def sum_list_comp(n=100_000_000): return sum([i for i in range(n)])
import numpy def sum_numpy(n=100_000_000): return numpy.sum(numpy.arange(n, dtype=numpy.int64))
import numpy def sum_numpy_python_range(n=100_000_000): return numpy.sum(range(n))
上述 7 種方法得到的結(jié)果是一樣的,但是消耗的時(shí)間卻各不相同,你可以猜測(cè)一下哪一個(gè)方法最快,然后看下面代碼的執(zhí)行結(jié)果:
import timeit def main(): l_align = 25 print(f'{"1、while 循環(huán)":<{l_align}} {timeit.timeit(while_loop, number=1):.6f}') print(f"{'2、for 循環(huán)':<{l_align}}{timeit.timeit(for_loop, number=1):.6f}") print(f'{"3、sum range":<{l_align}} {timeit.timeit(sum_range, number=1):.6f}') print(f'{"4、sum generator":<{l_align}} {timeit.timeit(sum_generator, number=1):.6f}') print(f'{"5、sum list comprehension":<{l_align}} {timeit.timeit(sum_list_comp, number=1):.6f}') print(f'{"6、sum numpy":<{l_align}} {timeit.timeit(sum_numpy, number=1):.6f}') print(f'{"7、sum numpy python range":<{l_align}} {timeit.timeit(sum_numpy_python_range, number=1):.6f}') if __name__ == '__main__': main()
執(zhí)行結(jié)果如下所示:
for 和 while 本質(zhì)上在做相同的事情,但是 while 是純 Python 代碼,而 for 是調(diào)用了 C 擴(kuò)展來對(duì)變量進(jìn)行遞增和邊界檢查,我們知道 CPython 解釋器就是 C 語言編寫的,Python 代碼要比 C 代碼慢,而 for 循環(huán)代表 C,while 循環(huán)代表 Python,因此 for 比 while 快。
numpy 主要是用 C 編寫的,相同的功能,肯定是 numpy 的快,類似的,numpy 的 arange 肯定比 Python 的 range 快。
numpy 的 sum 與 Python 的 range 結(jié)合使用,結(jié)果耗時(shí)最長,見方法 7。最好是都使用 numpy 包來完成任務(wù),像方法 6。
生成器是惰性的,不會(huì)一下子生成 1 億個(gè)數(shù)字,而列表推導(dǎo)式會(huì)一下子申請(qǐng)全部的數(shù)字,內(nèi)存占有較高不說,還不能有效地利用緩存,因此性能稍差。
到此,關(guān)于“Python中快的循環(huán)方式有哪些”的學(xué)習(xí)就結(jié)束了,希望能夠解決大家的疑惑。理論與實(shí)踐的搭配能更好的幫助大家學(xué)習(xí),快去試試吧!若想繼續(xù)學(xué)習(xí)更多相關(guān)知識(shí),請(qǐng)繼續(xù)關(guān)注創(chuàng)新互聯(lián)網(wǎng)站,小編會(huì)繼續(xù)努力為大家?guī)砀鄬?shí)用的文章!