本篇內(nèi)容介紹了“怎么使用HashMap的循環(huán)”的有關(guān)知識,在實際案例的操作過程中,不少人都會遇到這樣的困境,接下來就讓小編帶領(lǐng)大家學(xué)習(xí)一下如何處理這些情況吧!希望大家仔細(xì)閱讀,能夠?qū)W有所成!
目前創(chuàng)新互聯(lián)已為近1000家的企業(yè)提供了網(wǎng)站建設(shè)、域名、網(wǎng)絡(luò)空間、成都網(wǎng)站托管、企業(yè)網(wǎng)站設(shè)計、雨花網(wǎng)站維護(hù)等服務(wù),公司將堅持客戶導(dǎo)向、應(yīng)用為本的策略,正道將秉承"和諧、參與、激情"的文化,與客戶和合作伙伴齊心協(xié)力一起成長,共同發(fā)展。
先來看看每種遍歷的方式:
在for循環(huán)中使用entries實現(xiàn)Map的遍歷
public static void forEachEntries() { for (Map.Entryentry : map.entrySet()) { String mapKey = entry.getKey(); String mapValue = entry.getValue(); } }
在for循環(huán)中遍歷key
public static void forEachKey() { for (String key : map.keySet()) { String mapKey = key; String mapValue = map.get(mapKey); } }
在for循環(huán)中遍歷value
public static void forEachValues() { for (String key : map.values()) { String val = key; } }
Iterator遍歷
public static void forEachIterator() { Iterator> entries = map.entrySet().iterator(); while (entries.hasNext()) { Entry entry = entries.next(); String key = entry.getKey(); String value = entry.getValue(); } }
forEach jdk1.8遍歷
public static void forEach() { map.forEach((key, val) -> { String key1 = key; String value = val; }); }
Stream jdk1.8遍歷
map.entrySet().stream().forEach((entry) -> { String key = entry.getKey(); String value = entry.getValue(); });
Streamparallel jdk1.8遍歷
public static void forEachStreamparallel() { map.entrySet().parallelStream().forEach((entry) -> { String key = entry.getKey(); String value = entry.getValue(); }); }
以上就是常見的對于map的一些遍歷的方式,下面我們來寫個測試用例來看下這些遍歷方式,哪些是效率最好的。下面測試用例是基于JMH來測試的 首先引入pom
org.openjdk.jmh jmh-core 1.23 org.openjdk.jmh jmh-generator-annprocess 1.23 provided
關(guān)于jmh測試如可能會影響結(jié)果的一些因素這里就不詳細(xì)介紹了,可以參考文末的第一個鏈接寫的非常詳細(xì)。以及測試用例為什么要這么寫(都是為了消除JIT對測試代碼的影響)這是參照官網(wǎng)的鏈接:編寫測試代碼如下:
package com.workit.autoconfigure.autoconfigure.controller; import org.openjdk.jmh.annotations.*; import org.openjdk.jmh.infra.Blackhole; import org.openjdk.jmh.results.format.ResultFormatType; import org.openjdk.jmh.runner.Runner; import org.openjdk.jmh.runner.RunnerException; import org.openjdk.jmh.runner.options.Options; import org.openjdk.jmh.runner.options.OptionsBuilder; import java.util.HashMap; import java.util.Iterator; import java.util.Map; import java.util.Map.Entry; import java.util.UUID; import java.util.concurrent.TimeUnit; /** * @author:公眾號:java金融 * @Date: * @Description:微信搜一搜【java金融】回復(fù)666 */ @State(Scope.Thread) @Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS) @Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS) @Fork(1) @BenchmarkMode(Mode.AverageTime) @OutputTimeUnit(TimeUnit.NANOSECONDS) public class InstructionsBenchmark { public static void main(String[] args) throws RunnerException { Options opt = new OptionsBuilder().include(InstructionsBenchmark.class.getSimpleName()).result("result.json").resultFormat(ResultFormatType.JSON).build(); new Runner(opt).run(); } static final int BASE = 42; static int add(int key,int val) { return BASE + key +val; } @Param({"1", "10", "100", "1000","10000","100000"}) int size; private static Mapmap; // 初始化方法,在全部Benchmark運行之前進(jìn)行 @Setup(Level.Trial) public void init() { map = new HashMap<>(size); for (int i = 0; i < size; i++) { map.put(i, i); } } /** * 在for循環(huán)中使用entries實現(xiàn)Map的遍歷: */ @Benchmark public static void forEachEntries(Blackhole blackhole) { for (Map.Entry entry : map.entrySet()) { Integer mapKey = entry.getKey(); Integer mapValue = entry.getValue(); blackhole.consume(add(mapKey,mapValue)); } } /** * 在for循環(huán)中遍歷key */ @Benchmark public static StringBuffer forEachKey(Blackhole blackhole) { StringBuffer stringBuffer = new StringBuffer(); for (Integer key : map.keySet()) { // Integer mapValue = map.get(key); blackhole.consume(add(key,key)); } return stringBuffer; } /** * 在for循環(huán)中遍歷value */ @Benchmark public static void forEachValues(Blackhole blackhole) { for (Integer key : map.values()) { blackhole.consume(add(key,key)); } } /** * Iterator遍歷; */ @Benchmark public static void forEachIterator(Blackhole blackhole) { Iterator > entries = map.entrySet().iterator(); while (entries.hasNext()) { Entry entry = entries.next(); Integer key = entry.getKey(); Integer value = entry.getValue(); blackhole.consume(add(key,value)); } } /** * forEach jdk1.8遍歷 */ @Benchmark public static void forEachLamada(Blackhole blackhole) { map.forEach((key, value) -> { blackhole.consume(add(key,value)); }); } /** * forEach jdk1.8遍歷 */ @Benchmark public static void forEachStream(Blackhole blackhole) { map.entrySet().stream().forEach((entry) -> { Integer key = entry.getKey(); Integer value = entry.getValue(); blackhole.consume(add(key,value)); }); } @Benchmark public static void forEachStreamparallel(Blackhole blackhole) { map.entrySet().parallelStream().forEach((entry) -> { Integer key = entry.getKey(); Integer value = entry.getValue(); blackhole.consume(add(key,value)); }); } }
運行結(jié)果如下:「注:運行環(huán)境idea 2019.3,jdk1.8,windows7 64位?!?/p>
Benchmark (size) Mode Cnt Score Error Units InstructionsBenchmark.forEachEntries 1 avgt 5 10.021 ± 0.224 ns/op InstructionsBenchmark.forEachEntries 10 avgt 5 71.709 ± 2.537 ns/op InstructionsBenchmark.forEachEntries 100 avgt 5 738.873 ± 12.132 ns/op InstructionsBenchmark.forEachEntries 1000 avgt 5 7804.431 ± 136.635 ns/op InstructionsBenchmark.forEachEntries 10000 avgt 5 88540.345 ± 14915.682 ns/op InstructionsBenchmark.forEachEntries 100000 avgt 5 1083347.001 ± 136865.960 ns/op InstructionsBenchmark.forEachIterator 1 avgt 5 10.675 ± 2.532 ns/op InstructionsBenchmark.forEachIterator 10 avgt 5 73.934 ± 4.517 ns/op InstructionsBenchmark.forEachIterator 100 avgt 5 775.847 ± 198.806 ns/op InstructionsBenchmark.forEachIterator 1000 avgt 5 8905.041 ± 1294.618 ns/op InstructionsBenchmark.forEachIterator 10000 avgt 5 98686.478 ± 10944.570 ns/op InstructionsBenchmark.forEachIterator 100000 avgt 5 1045309.216 ± 36957.608 ns/op InstructionsBenchmark.forEachKey 1 avgt 5 18.478 ± 1.344 ns/op InstructionsBenchmark.forEachKey 10 avgt 5 76.398 ± 12.179 ns/op InstructionsBenchmark.forEachKey 100 avgt 5 768.507 ± 23.892 ns/op InstructionsBenchmark.forEachKey 1000 avgt 5 11117.896 ± 1665.021 ns/op InstructionsBenchmark.forEachKey 10000 avgt 5 84871.880 ± 12056.592 ns/op InstructionsBenchmark.forEachKey 100000 avgt 5 1114948.566 ± 65582.709 ns/op InstructionsBenchmark.forEachLamada 1 avgt 5 9.444 ± 0.607 ns/op InstructionsBenchmark.forEachLamada 10 avgt 5 76.125 ± 5.640 ns/op InstructionsBenchmark.forEachLamada 100 avgt 5 861.601 ± 98.045 ns/op InstructionsBenchmark.forEachLamada 1000 avgt 5 7769.714 ± 1663.914 ns/op InstructionsBenchmark.forEachLamada 10000 avgt 5 73250.238 ± 6032.161 ns/op InstructionsBenchmark.forEachLamada 100000 avgt 5 836781.987 ± 72125.745 ns/op InstructionsBenchmark.forEachStream 1 avgt 5 29.113 ± 3.275 ns/op InstructionsBenchmark.forEachStream 10 avgt 5 117.951 ± 13.755 ns/op InstructionsBenchmark.forEachStream 100 avgt 5 1064.767 ± 66.869 ns/op InstructionsBenchmark.forEachStream 1000 avgt 5 9969.549 ± 342.483 ns/op InstructionsBenchmark.forEachStream 10000 avgt 5 93154.061 ± 7638.122 ns/op InstructionsBenchmark.forEachStream 100000 avgt 5 1113961.590 ± 218662.668 ns/op InstructionsBenchmark.forEachStreamparallel 1 avgt 5 65.466 ± 5.519 ns/op InstructionsBenchmark.forEachStreamparallel 10 avgt 5 2298.999 ± 721.455 ns/op InstructionsBenchmark.forEachStreamparallel 100 avgt 5 8270.759 ± 1801.082 ns/op InstructionsBenchmark.forEachStreamparallel 1000 avgt 5 16049.564 ± 1972.856 ns/op InstructionsBenchmark.forEachStreamparallel 10000 avgt 5 69230.849 ± 12169.260 ns/op InstructionsBenchmark.forEachStreamparallel 100000 avgt 5 638129.559 ± 14885.962 ns/op InstructionsBenchmark.forEachValues 1 avgt 5 9.743 ± 2.770 ns/op InstructionsBenchmark.forEachValues 10 avgt 5 70.761 ± 16.574 ns/op InstructionsBenchmark.forEachValues 100 avgt 5 745.069 ± 329.548 ns/op InstructionsBenchmark.forEachValues 1000 avgt 5 7772.584 ± 1702.295 ns/op InstructionsBenchmark.forEachValues 10000 avgt 5 74063.468 ± 23752.678 ns/op InstructionsBenchmark.forEachValues 100000 avgt 5 994057.370 ± 279310.867 ns/op
我們可以發(fā)現(xiàn),數(shù)據(jù)量較小的時候forEachEntries和forEachIterator、以及l(fā)amada循環(huán)效率都差不多forEachStreamarallel的效率反而較低,只有當(dāng)數(shù)據(jù)量達(dá)到10000以上parallelStream的優(yōu)勢就體現(xiàn)出來了。所以平時選擇使用哪種循環(huán)方式的時候沒必要太糾結(jié)哪一種方式,其實每種方式之間的效率還是微乎其微的。選擇適合自己的就好。
“怎么使用HashMap的循環(huán)”的內(nèi)容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業(yè)相關(guān)的知識可以關(guān)注創(chuàng)新互聯(lián)網(wǎng)站,小編將為大家輸出更多高質(zhì)量的實用文章!