真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

Loki的作用是什么

本篇內(nèi)容介紹了“Loki 的作用是什么”的有關(guān)知識(shí),在實(shí)際案例的操作過程中,不少人都會(huì)遇到這樣的困境,接下來就讓小編帶領(lǐng)大家學(xué)習(xí)一下如何處理這些情況吧!希望大家仔細(xì)閱讀,能夠?qū)W有所成!

創(chuàng)新互聯(lián)-專業(yè)網(wǎng)站定制、快速模板網(wǎng)站建設(shè)、高性價(jià)比平利網(wǎng)站開發(fā)、企業(yè)建站全套包干低至880元,成熟完善的模板庫,直接使用。一站式平利網(wǎng)站制作公司更省心,省錢,快速模板網(wǎng)站建設(shè)找我們,業(yè)務(wù)覆蓋平利地區(qū)。費(fèi)用合理售后完善,10年實(shí)體公司更值得信賴。

前面我們介紹了 Loki  的一些基本使用配置,但是對(duì) Loki 還是了解不夠深入,官方文檔寫得較為凌亂,而且沒有跟上新版本,為了能夠?qū)?Loki  有一個(gè)更深入的認(rèn)識(shí),做到有的放矢,這里面我們嘗試對(duì) Loki  的源碼進(jìn)行一些簡(jiǎn)單的分析,由于有很多模塊和實(shí)現(xiàn)細(xì)節(jié),這里我們主要是對(duì)核心功能進(jìn)行分析,希望對(duì)大家有所幫助。本文首先對(duì)日志的寫入過程進(jìn)行簡(jiǎn)單分析。

Loki 的作用是什么

Distributor Push API

Promtail 通過 Loki 的 Push API 接口推送日志數(shù)據(jù),該接口在初始化 Distributor  的時(shí)候進(jìn)行初始化,在控制器基礎(chǔ)上包裝了兩個(gè)中間件,其中的 HTTPAuthMiddleware 就是獲取租戶 ID,如果開啟了認(rèn)證配置,則從  X-Scope-OrgID 這個(gè)請(qǐng)求 Header 頭里面獲取,如果沒有配置則用默認(rèn)的 fake 代替。

// pkg/loki/modules.go func (t *Loki) initDistributor() (services.Service, error) {  ......  if t.cfg.Target != All {   logproto.RegisterPusherServer(t.Server.GRPC, t.distributor)  }   pushHandler := middleware.Merge(   serverutil.RecoveryHTTPMiddleware,   t.HTTPAuthMiddleware,  ).Wrap(http.HandlerFunc(t.distributor.PushHandler))   t.Server.HTTP.Handle("/api/prom/push", pushHandler)  t.Server.HTTP.Handle("/loki/api/v1/push", pushHandler)  return t.distributor, nil }

Push API 處理器實(shí)現(xiàn)如下所示,首先通過 ParseRequest 函數(shù)將 Http 請(qǐng)求轉(zhuǎn)換成  logproto.PushRequest,然后直接調(diào)用 Distributor 下面的 Push 函數(shù)來推送日志數(shù)據(jù):

// pkg/distributor/http.go  // PushHandler 從 HTTP body 中讀取一個(gè) snappy 壓縮的 proto func (d *Distributor) PushHandler(w http.ResponseWriter, r *http.Request) {  logger := util_log.WithContext(r.Context(), util_log.Logger)  userID, _ := user.ExtractOrgID(r.Context())  req, err := ParseRequest(logger, userID, r)  ......  _, err = d.Push(r.Context(), req)  ...... }  func ParseRequest(logger gokit.Logger, userID string, r *http.Request) (*logproto.PushRequest, error) {  var body lokiutil.SizeReader  contentEncoding := r.Header.Get(contentEnc)  switch contentEncoding {  case "":   body = lokiutil.NewSizeReader(r.Body)  case "snappy":   body = lokiutil.NewSizeReader(r.Body)  case "gzip":   gzipReader, err := gzip.NewReader(r.Body)   if err != nil {    return nil, err   }   defer gzipReader.Close()   body = lokiutil.NewSizeReader(gzipReader)  default:   return nil, fmt.Errorf("Content-Encoding %q not supported", contentEncoding)  }   contentType := r.Header.Get(contentType)  var req logproto.PushRequest  ......  switch contentType {  case applicationJSON:   var err error   if loghttp.GetVersion(r.RequestURI) == loghttp.VersionV1 {    err = unmarshal.DecodePushRequest(body, &req)   } else {    err = unmarshal_legacy.DecodePushRequest(body, &req)   }   if err != nil {    return nil, err   }  default:   // When no content-type header is set or when it is set to   // `application/x-protobuf`: expect snappy compression.   if err := util.ParseProtoReader(r.Context(), body, int(r.ContentLength), math.MaxInt32, &req, util.RawSnappy); err != nil {    return nil, err   }  }  return &req, nil }

首先我們先了解下 PushRequest 的結(jié)構(gòu),PushRequest 就是一個(gè) Stream 集合:

// pkg/logproto/logproto.pb.go type PushRequest struct {  Streams []Stream `protobuf:"bytes,1,rep,name=streams,proto3,customtype=Stream" json:"streams"` }  // pkg/logproto/types.go // Stream 流包含一個(gè)唯一的標(biāo)簽集,作為一個(gè)字符串,然后還包含一組日志條目 type Stream struct {  Labels  string  `protobuf:"bytes,1,opt,name=labels,proto3" json:"labels"`  Entries []Entry `protobuf:"bytes,2,rep,name=entries,proto3,customtype=EntryAdapter" json:"entries"` }  // Entry 是一個(gè)帶有時(shí)間戳的日志條目 type Entry struct {  Timestamp time.Time `protobuf:"bytes,1,opt,name=timestamp,proto3,stdtime" json:"ts"`  Line      string    `protobuf:"bytes,2,opt,name=line,proto3" json:"line"` }

 Loki 的作用是什么

Loki 的作用是什么

然后查看 Distributor 下的 Push 函數(shù)實(shí)現(xiàn):

// pkg/distributor/distributor.go // Push 日志流集合 func (d *Distributor) Push(ctx context.Context, req *logproto.PushRequest) (*logproto.PushResponse, error) {  // 獲取租戶ID  userID, err := user.ExtractOrgID(ctx)  ......   // 首先把請(qǐng)求平鋪成一個(gè)樣本的列表  streams := make([]streamTracker, 0, len(req.Streams))  keys := make([]uint32, 0, len(req.Streams))  var validationErr error  validatedSamplesSize := 0  validatedSamplesCount := 0   validationContext := d.validator.getValidationContextFor(userID)   for _, stream := range req.Streams {   // 解析日志流標(biāo)簽   stream.Labels, err = d.parseStreamLabels(validationContext, stream.Labels, &stream)   ......   n := 0   for _, entry := range stream.Entries {    // 校驗(yàn)一個(gè)日志Entry實(shí)體    if err := d.validator.ValidateEntry(validationContext, stream.Labels, entry); err != nil {     validationErr = err     continue    }    stream.Entries[n] = entry    n++    // 校驗(yàn)成功的樣本大小和個(gè)數(shù)    validatedSamplesSize += len(entry.Line)    validatedSamplesCount++   }   // 去掉校驗(yàn)失敗的實(shí)體   stream.Entries = stream.Entries[:n]    if len(stream.Entries) == 0 {    continue   }   // 為當(dāng)前日志流生成用于hash換的token值   keys = append(keys, util.TokenFor(userID, stream.Labels))   streams = append(streams, streamTracker{    stream: stream,   })  }   if len(streams) == 0 {   return &logproto.PushResponse{}, validationErr  }   now := time.Now()  // 每個(gè)租戶有一個(gè)限速器,判斷可以正常傳輸?shù)娜罩敬笮∈欠駪?yīng)該被限制  if !d.ingestionRateLimiter.AllowN(now, userID, validatedSamplesSize) {   // 返回429表明客戶端被限速了   ......   return nil, httpgrpc.Errorf(http.StatusTooManyRequests, validation.RateLimitedErrorMsg, int(d.ingestionRateLimiter.Limit(now, userID)), validatedSamplesCount, validatedSamplesSize)  }   const maxExpectedReplicationSet = 5 // typical replication factor 3 plus one for inactive plus one for luck  var descs [maxExpectedReplicationSet]ring.InstanceDesc   samplesByIngester := map[string][]*streamTracker{}  ingesterDescs := map[string]ring.InstanceDesc{}  for i, key := range keys {   // ReplicationSet 描述了一個(gè)指定的鍵與哪些 Ingesters 進(jìn)行對(duì)話,以及可以容忍多少個(gè)錯(cuò)誤   // 根據(jù) label hash 到 hash 環(huán)上獲取對(duì)應(yīng)的 ingester 節(jié)點(diǎn),一個(gè)節(jié)點(diǎn)可能有多個(gè)對(duì)等的 ingester 副本來做 HA   replicationSet, err := d.ingestersRing.Get(key, ring.Write, descs[:0], nil, nil)   ......   // 最小成功的實(shí)例樹   streams[i].minSuccess = len(replicationSet.Ingesters) - replicationSet.MaxErrors   // 可容忍的最大故障實(shí)例數(shù)   streams[i].maxFailures = replicationSet.MaxErrors   // 將 Stream 按對(duì)應(yīng)的 ingester 進(jìn)行分組   for _, ingester := range replicationSet.Ingesters {    // 配置每個(gè) ingester 副本對(duì)應(yīng)的日志流數(shù)據(jù)    samplesByIngester[ingester.Addr] = append(samplesByIngester[ingester.Addr], &streams[i])    ingesterDescs[ingester.Addr] = ingester   }  }   tracker := pushTracker{   done: make(chan struct{}),   err:  make(chan error),  }  tracker.samplesPending.Store(int32(len(streams)))  // 循環(huán)Ingesters  for ingester, samples := range samplesByIngester {   // 讓ingester并行處理通過hash環(huán)對(duì)應(yīng)的日志流列表   go func(ingester ring.InstanceDesc, samples []*streamTracker) {    ......    // 將日志流樣本數(shù)據(jù)下發(fā)給對(duì)應(yīng)的 ingester 節(jié)點(diǎn)    d.sendSamples(localCtx, ingester, samples, &tracker)   }(ingesterDescs[ingester], samples)  }  ...... }

Push 函數(shù)的核心就是根據(jù)日志流的標(biāo)簽來計(jì)算一個(gè) Token 值,根據(jù)這個(gè) Token 值去哈希環(huán)上獲取對(duì)應(yīng)的處理日志的 Ingester  實(shí)例,然后并行通過 Ingester 處理日志流數(shù)據(jù),通過 sendSamples 函數(shù)為單個(gè) ingester 去發(fā)送日志樣本數(shù)據(jù):

// pkg/distributor/distributor.go  func (d *Distributor) sendSamples(ctx context.Context, ingester ring.InstanceDesc, streamTrackers []*streamTracker, pushTracker *pushTracker) {  err := d.sendSamplesErr(ctx, ingester, streamTrackers)  ...... }  func (d *Distributor) sendSamplesErr(ctx context.Context, ingester ring.InstanceDesc, streams []*streamTracker) error {  // 根據(jù) ingester 地址獲取 client  c, err := d.pool.GetClientFor(ingester.Addr)  ......  // 重新構(gòu)造 PushRequest  req := &logproto.PushRequest{   Streams: make([]logproto.Stream, len(streams)),  }  for i, s := range streams {   req.Streams[i] = s.stream  }  // 通過 Ingester 客戶端請(qǐng)求數(shù)據(jù)  _, err = c.(logproto.PusherClient).Push(ctx, req)  ...... }

Ingester 寫入日志

Ingester 客戶端中的 Push 函數(shù)實(shí)際上就是一個(gè) gRPC 服務(wù)的客戶端:

// pkg/ingester/ingester.go  // Push 實(shí)現(xiàn) logproto.Pusher. func (i *Ingester) Push(ctx context.Context, req *logproto.PushRequest) (*logproto.PushResponse, error) {  // 獲取租戶ID  instanceID, err := user.ExtractOrgID(ctx)  ......  // 根據(jù)租戶ID獲取 instance 對(duì)象  instance := i.getOrCreateInstance(instanceID)  // 直接調(diào)用 instance 對(duì)象 Push 數(shù)據(jù)  err = instance.Push(ctx, req)  return &logproto.PushResponse{}, err }

instance 下的 Push 函數(shù):

// pkg/ingester/instance.go  func (i *instance) Push(ctx context.Context, req *logproto.PushRequest) error {  record := recordPool.GetRecord()  record.UserID = i.instanceID  defer recordPool.PutRecord(record)   i.streamsMtx.Lock()  defer i.streamsMtx.Unlock()   var appendErr error  for _, s := range req.Streams {   // 獲取一個(gè) stream 對(duì)象   stream, err := i.getOrCreateStream(s, false, record)   if err != nil {    appendErr = err    continue   }   // 真正用于數(shù)據(jù)處理的是 stream 對(duì)象中的 Push 函數(shù)   if _, err := stream.Push(ctx, s.Entries, record); err != nil {    appendErr = err    continue   }  }  ......  return appendErr }  func (i *instance) getOrCreateStream(pushReqStream logproto.Stream, lock bool, record *WALRecord) (*stream, error) {  if lock {   i.streamsMtx.Lock()   defer i.streamsMtx.Unlock()  }  // 如果 streams 中包含當(dāng)前標(biāo)簽列表對(duì)應(yīng)的 stream 對(duì)象,則直接返回  stream, ok := i.streams[pushReqStream.Labels]  if ok {   return stream, nil  }  // record 只在重放 WAL 時(shí)為 nil  // 我們不希望在重放 WAL 后丟掉數(shù)據(jù)  // 為 instance 降低 stream 流限制  var err error  if record != nil {   // 限流器判斷   // AssertMaxStreamsPerUser 確保與當(dāng)前輸入的流數(shù)量沒有達(dá)到限制   err = i.limiter.AssertMaxStreamsPerUser(i.instanceID, len(i.streams))  }  ......  // 解析日志流標(biāo)簽集  labels, err := logql.ParseLabels(pushReqStream.Labels)  ......  // 獲取對(duì)應(yīng)標(biāo)簽集的指紋  fp := i.getHashForLabels(labels)  // 重新實(shí)例化一個(gè) stream 對(duì)象,這里還會(huì)維護(hù)日志流的倒排索引  sortedLabels := i.index.Add(client.FromLabelsToLabelAdapters(labels), fp)  stream = newStream(i.cfg, fp, sortedLabels, i.metrics)  // 將stream設(shè)置到streams中去  i.streams[pushReqStream.Labels] = stream  i.streamsByFP[fp] = stream   // 當(dāng)重放 wal 的時(shí)候 record 是 nil (我們不希望在重放時(shí)重寫 wal entries).  if record != nil {   record.Series = append(record.Series, tsdb_record.RefSeries{    Ref:    uint64(fp),    Labels: sortedLabels,   })  } else {   // 如果 record 為 nil,這就是一個(gè) WAL 恢復(fù)   i.metrics.recoveredStreamsTotal.Inc()  }  ......  i.addTailersToNewStream(stream)  return stream, nil }

這個(gè)里面涉及到 WAL 這一塊的設(shè)計(jì),比較復(fù)雜,我們可以先看 stream 下面的 Push 函數(shù)實(shí)現(xiàn),主要就是將收到的 []Entry 先 Append  到內(nèi)存中的 Chunk 流([]chunkDesc) 中:

// pkg/ingester/stream.go func (s *stream) Push(ctx context.Context, entries []logproto.Entry, record *WALRecord) (int, error) {  s.chunkMtx.Lock()  defer s.chunkMtx.Unlock()  var bytesAdded int  prevNumChunks := len(s.chunks)  var lastChunkTimestamp time.Time  // 如果之前的 chunks 列表為空,則創(chuàng)建一個(gè)新的 chunk  if prevNumChunks == 0 {   s.chunks = append(s.chunks, chunkDesc{    chunk: s.NewChunk(),   })   chunksCreatedTotal.Inc()  } else {   // 獲取最新一個(gè)chunk的日志時(shí)間戳   _, lastChunkTimestamp = s.chunks[len(s.chunks)-1].chunk.Bounds()  }   var storedEntries []logproto.Entry  failedEntriesWithError := []entryWithError{}   for i := range entries {   // 如果這個(gè)日志條目與我們最后 append 的一行的時(shí)間戳和內(nèi)容相匹配,則忽略它   if entries[i].Timestamp.Equal(s.lastLine.ts) && entries[i].Line == s.lastLine.content {    continue   }    // 最新的一個(gè) chunk   chunk := &s.chunks[len(s.chunks)-1]   // 如果當(dāng)前chunk已經(jīng)關(guān)閉 或者 已經(jīng)達(dá)到設(shè)置的最大 Chunk 大小   if chunk.closed || !chunk.chunk.SpaceFor(&entries[i]) || s.cutChunkForSynchronization(entries[i].Timestamp, lastChunkTimestamp, chunk, s.cfg.SyncPeriod, s.cfg.SyncMinUtilization) {    // 如果 chunk 沒有更多的空間,則調(diào)用 Close 來以確保 head block 中的數(shù)據(jù)都被切割和壓縮。    err := chunk.chunk.Close()    ......    chunk.closed = true    ......    // Append 一個(gè)新的 Chunk    s.chunks = append(s.chunks, chunkDesc{     chunk: s.NewChunk(),    })    chunk = &s.chunks[len(s.chunks)-1]    lastChunkTimestamp = time.Time{}   }   // 往 chunk 里面 Append 日志數(shù)據(jù)   if err := chunk.chunk.Append(&entries[i]); err != nil {    failedEntriesWithError = append(failedEntriesWithError, entryWithError{&entries[i], err})   } else {    // 存儲(chǔ)添加到 chunk 中的日志數(shù)據(jù)    storedEntries = append(storedEntries, entries[i])    // 配置最后日志行的數(shù)據(jù)    lastChunkTimestamp = entries[i].Timestamp    s.lastLine.ts = lastChunkTimestamp    s.lastLine.content = entries[i].Line    // 累計(jì)大小    bytesAdded += len(entries[i].Line)   }   chunk.lastUpdated = time.Now()  }   if len(storedEntries) != 0 {   // 當(dāng)重放 wal 的時(shí)候 record 將為 nil(我們不希望在重放的時(shí)候重寫wal日志條目)   if record != nil {    record.AddEntries(uint64(s.fp), storedEntries...)   }   // 后續(xù)是用與tail日志的處理   ......  }  ......  // 如果新增了chunks  if len(s.chunks) != prevNumChunks {   memoryChunks.Add(float64(len(s.chunks) - prevNumChunks))  }  return bytesAdded, nil }

Chunk 其實(shí)就是多條日志構(gòu)成的壓縮包,將日志壓成 Chunk 的可以直接存入對(duì)象存儲(chǔ), 一個(gè) Chunk 到達(dá)指定大小之前會(huì)不斷 Append  新的日志到里面,而在達(dá)到大小之后, Chunk 就會(huì)關(guān)閉等待持久化(強(qiáng)制持久化也會(huì)關(guān)閉 Chunk, 比如關(guān)閉 ingester 實(shí)例時(shí)就會(huì)關(guān)閉所有的  Chunk 并持久化)。Chunk 的大小控制很重要:

  • 假如 Chunk 容量過小: 首先是導(dǎo)致壓縮效率不高,同時(shí)也會(huì)增加整體的 Chunk 數(shù)量, 導(dǎo)致倒排索引過大,最后, 對(duì)象存儲(chǔ)的操作次數(shù)也會(huì)變多,  帶來額外的性能開銷

  • 假如 Chunk 過大: 一個(gè) Chunk 的 open 時(shí)間會(huì)更長(zhǎng), 占用額外的內(nèi)存空間, 同時(shí), 也增加了丟數(shù)據(jù)的風(fēng)險(xiǎn),Chunk  過大也會(huì)導(dǎo)致查詢讀放大

Loki 的作用是什么

在將日志流追加到 Chunk 中過后,在 Ingester 初始化時(shí)會(huì)啟動(dòng)兩個(gè)循環(huán)去處理 Chunk 數(shù)據(jù),分別從 chunks  數(shù)據(jù)取出存入優(yōu)先級(jí)隊(duì)列,另外一個(gè)循環(huán)定期檢查從內(nèi)存中刪除已經(jīng)持久化過后的數(shù)據(jù)。

首先是 Ingester 中定義了一個(gè) flushQueues 屬性,是一個(gè)優(yōu)先級(jí)隊(duì)列數(shù)組,該隊(duì)列中存放的是 flushOp:

// pkg/ingester/ingester.go type Ingester struct {  services.Service  ......  // 每個(gè) flush 線程一個(gè)隊(duì)列,指紋用來選擇隊(duì)列  flushQueues     []*util.PriorityQueue  // 優(yōu)先級(jí)隊(duì)列數(shù)組  flushQueuesDone sync.WaitGroup  ...... }  // pkg/ingester/flush.go // 優(yōu)先級(jí)隊(duì)列中存放的數(shù)據(jù) type flushOp struct {  from      model.Time  userID    string  fp        model.Fingerprint  immediate bool }

在初始化 Ingester 的時(shí)候會(huì)根據(jù)傳遞的 ConcurrentFlushes 參數(shù)來實(shí)例化 flushQueues的大?。?/p>

// pkg/ingester/ingester.go func New(cfg Config, clientConfig client.Config, store ChunkStore, limits *validation.Overrides, configs *runtime.TenantConfigs, registerer prometheus.Registerer) (*Ingester, error) {  ......  i := &Ingester{   ......   flushQueues:           make([]*util.PriorityQueue, cfg.ConcurrentFlushes),   ......  }  ......  i.Service = services.NewBasicService(i.starting, i.running, i.stopping)  return i, nil }

然后通過 services.NewBasicService 實(shí)例化 Service 的時(shí)候指定了服務(wù)的 Starting、Running、Stopping  3 個(gè)狀態(tài),在其中的 staring 狀態(tài)函數(shù)中會(huì)啟動(dòng)協(xié)程去消費(fèi)優(yōu)先級(jí)隊(duì)列中的數(shù)據(jù)

// pkg/ingester/ingester.go func (i *Ingester) starting(ctx context.Context) error {  // todo,如果開啟了 WAL 的處理  ......  // 初始化 flushQueues  i.InitFlushQueues()  ......  // 啟動(dòng)循環(huán)檢查chunk數(shù)據(jù)  i.loopDone.Add(1)  go i.loop()  return nil }

初始化 flushQueues 實(shí)現(xiàn)如下所示,其中 flushQueuesDone 是一個(gè) WaitGroup,根據(jù)配置的并發(fā)數(shù)量并發(fā)執(zhí)行  flushLoop 操作:

// pkg/ingester/flush.go func (i *Ingester) InitFlushQueues() {  i.flushQueuesDone.Add(i.cfg.ConcurrentFlushes)  for j := 0; j < i.cfg.ConcurrentFlushes; j++ {   // 為每個(gè)協(xié)程構(gòu)造一個(gè)優(yōu)先級(jí)隊(duì)列   i.flushQueues[j] = util.NewPriorityQueue(flushQueueLength)   go i.flushLoop(j)  } }

每一個(gè)優(yōu)先級(jí)隊(duì)列循環(huán)消費(fèi)數(shù)據(jù):

// pkg/ingester/flush.go func (i *Ingester) flushLoop(j int) {  ......  for {   // 從隊(duì)列中根據(jù)優(yōu)先級(jí)取出數(shù)據(jù)   o := i.flushQueues[j].Dequeue()   if o == nil {    return   }   op := o.(*flushOp)   // 執(zhí)行真正的刷新用戶序列數(shù)據(jù)   err := i.flushUserSeries(op.userID, op.fp, op.immediate)   ......   // 如果退出時(shí)刷新失敗了,把失敗的操作放回到隊(duì)列中去。   if op.immediate && err != nil {    op.from = op.from.Add(flushBackoff)    i.flushQueues[j].Enqueue(op)   }  } }

刷新用戶的序列操作,也就是要保存到存儲(chǔ)中去:

// pkg/ingester/flush.go // 根據(jù)用戶ID刷新用戶日志序列 func (i *Ingester) flushUserSeries(userID string, fp model.Fingerprint, immediate bool) error {  instance, ok := i.getInstanceByID(userID)  ......  // 根據(jù)instance和fp指紋數(shù)據(jù)獲取需要刷新的chunks  chunks, labels, chunkMtx := i.collectChunksToFlush(instance, fp, immediate)  ......  // 執(zhí)行真正的刷新 chunks 操作  err := i.flushChunks(ctx, fp, labels, chunks, chunkMtx)  ...... }  // 收集需要刷新的 chunks func (i *Ingester) collectChunksToFlush(instance *instance, fp model.Fingerprint, immediate bool) ([]*chunkDesc, labels.Labels, *sync.RWMutex) {  instance.streamsMtx.Lock()  // 根據(jù)指紋數(shù)據(jù)獲取 stream  stream, ok := instance.streamsByFP[fp]  instance.streamsMtx.Unlock()  if !ok {   return nil, nil, nil  }   var result []*chunkDesc  stream.chunkMtx.Lock()  defer stream.chunkMtx.Unlock()  // 循環(huán)所有chunks  for j := range stream.chunks {   // 判斷是否應(yīng)該刷新當(dāng)前chunk   shouldFlush, reason := i.shouldFlushChunk(&stream.chunks[j])   if immediate || shouldFlush {    // 確保不再對(duì)該塊進(jìn)行寫操作(如果沒有關(guān)閉,則設(shè)置為關(guān)閉狀態(tài))    if !stream.chunks[j].closed {     stream.chunks[j].closed = true    }    // 如果該 chunk 還沒有被成功刷新,則刷新這個(gè)塊    if stream.chunks[j].flushed.IsZero() {     result = append(result, &stream.chunks[j])     ......    }   }  }  return result, stream.labels, &stream.chunkMtx }

下面是判斷一個(gè)具體的 chunk 是否應(yīng)該被刷新的邏輯:

// pkg/ingester/flush.go func (i *Ingester) shouldFlushChunk(chunk *chunkDesc) (bool, string) {  // chunk關(guān)閉了也應(yīng)該刷新了  if chunk.closed {   if chunk.synced {    return true, flushReasonSynced   }   return true, flushReasonFull  }  // chunk最后更新的時(shí)間超過了配置的 chunk 空閑時(shí)間 MaxChunkIdle  if time.Since(chunk.lastUpdated) > i.cfg.MaxChunkIdle {   return true, flushReasonIdle  }   // chunk的邊界時(shí)間操過了配置的 chunk  最大時(shí)間 MaxChunkAge  if from, to := chunk.chunk.Bounds(); to.Sub(from) > i.cfg.MaxChunkAge {   return true, flushReasonMaxAge  }  return false, "" }

真正將 chunks 數(shù)據(jù)刷新保存到存儲(chǔ)中是 flushChunks 函數(shù)實(shí)現(xiàn)的:

// pkg/ingester/flush.go func (i *Ingester) flushChunks(ctx context.Context, fp model.Fingerprint, labelPairs labels.Labels, cs []*chunkDesc, chunkMtx sync.Locker) error {  ......  wireChunks := make([]chunk.Chunk, len(cs))  // 下面的匿名函數(shù)用于生成保存到存儲(chǔ)中的chunk數(shù)據(jù)  err = func() error {   chunkMtx.Lock()   defer chunkMtx.Unlock()    for j, c := range cs {    if err := c.chunk.Close(); err != nil {     return err    }    firstTime, lastTime := loki_util.RoundToMilliseconds(c.chunk.Bounds())    ch := chunk.NewChunk(     userID, fp, metric,     chunkenc.NewFacade(c.chunk, i.cfg.BlockSize, i.cfg.TargetChunkSize),     firstTime,     lastTime,    )     chunkSize := c.chunk.BytesSize() + 4*1024 // size + 4kB should be enough room for cortex header    start := time.Now()    if err := ch.EncodeTo(bytes.NewBuffer(make([]byte, 0, chunkSize))); err != nil {     return err    }    wireChunks[j] = ch   }   return nil  }()    // 通過 store 接口保存 chunk 數(shù)據(jù)  if err := i.store.Put(ctx, wireChunks); err != nil {   return err  }   ......   chunkMtx.Lock()  defer chunkMtx.Unlock()  for i, wc := range wireChunks {   // flush 成功,寫入刷新時(shí)間   cs[i].flushed = time.Now()   // 下是一些監(jiān)控?cái)?shù)據(jù)更新   ......  }   return nil }

chunk 數(shù)據(jù)被寫入到存儲(chǔ)后,還有有一個(gè)協(xié)程會(huì)去定時(shí)清理本地的這些 chunk 數(shù)據(jù),在上面的 Ingester 的 staring 函數(shù)中最后有一個(gè)  go i.loop(),在這個(gè) loop() 函數(shù)中會(huì)每隔 FlushCheckPeriod(默認(rèn) 30s,可以通過  --ingester.flush-check-period 進(jìn)行配置)時(shí)間就會(huì)去去調(diào)用 sweepUsers 函數(shù)進(jìn)行垃圾回收:

// pkg/ingester/ingester.go func (i *Ingester) loop() {  defer i.loopDone.Done()   flushTicker := time.NewTicker(i.cfg.FlushCheckPeriod)  defer flushTicker.Stop()   for {   select {   case <-flushTicker.C:    i.sweepUsers(false, true)   case <-i.loopQuit:    return   }  } }

sweepUsers 函數(shù)用于執(zhí)行將日志流數(shù)據(jù)加入到優(yōu)先級(jí)隊(duì)列中,并對(duì)沒有序列的用戶進(jìn)行垃圾回收:

// pkg/ingester/flush.go // sweepUsers 定期執(zhí)行 flush 操作,并對(duì)沒有序列的用戶進(jìn)行垃圾回收 func (i *Ingester) sweepUsers(immediate, mayRemoveStreams bool) {  instances := i.getInstances()  for _, instance := range instances {   i.sweepInstance(instance, immediate, mayRemoveStreams)  } }  func (i *Ingester) sweepInstance(instance *instance, immediate, mayRemoveStreams bool) {  instance.streamsMtx.Lock()  defer instance.streamsMtx.Unlock()  for _, stream := range instance.streams {   i.sweepStream(instance, stream, immediate)   i.removeFlushedChunks(instance, stream, mayRemoveStreams)  } }  // must hold streamsMtx func (i *Ingester) sweepStream(instance *instance, stream *stream, immediate bool) {  stream.chunkMtx.RLock()  defer stream.chunkMtx.RUnlock()  if len(stream.chunks) == 0 {   return  }  // 最新的chunk  lastChunk := stream.chunks[len(stream.chunks)-1]  // 判斷是否應(yīng)該被flush  shouldFlush, _ := i.shouldFlushChunk(&lastChunk)  // 如果只有一個(gè)chunk并且不是強(qiáng)制持久化切最新的chunk還不應(yīng)該被flush,則直接返回  if len(stream.chunks) == 1 && !immediate && !shouldFlush {   return  }  // 根據(jù)指紋獲取用與處理的優(yōu)先級(jí)隊(duì)列索引  flushQueueIndex := int(uint64(stream.fp) % uint64(i.cfg.ConcurrentFlushes))  firstTime, _ := stream.chunks[0].chunk.Bounds()  // 加入到優(yōu)先級(jí)隊(duì)列中去  i.flushQueues[flushQueueIndex].Enqueue(&flushOp{   model.TimeFromUnixNano(firstTime.UnixNano()), instance.instanceID,   stream.fp, immediate,  }) }  // 移除已經(jīng)flush過后的chunks數(shù)據(jù) func (i *Ingester) removeFlushedChunks(instance *instance, stream *stream, mayRemoveStream bool) {  now := time.Now()   stream.chunkMtx.Lock()  defer stream.chunkMtx.Unlock()  prevNumChunks := len(stream.chunks)  var subtracted int  for len(stream.chunks) > 0 {   // 如果chunk還沒有被刷新到存儲(chǔ) 或者 chunk被刷新到存儲(chǔ)到現(xiàn)在的時(shí)間還沒操過 RetainPeriod(默認(rèn)15分鐘,可以通過--ingester.chunks-retain-period 進(jìn)行配置)則忽略   if stream.chunks[0].flushed.IsZero() || now.Sub(stream.chunks[0].flushed) < i.cfg.RetainPeriod {    break   }   subtracted += stream.chunks[0].chunk.UncompressedSize()   // 刪除引用,以便該塊可以被垃圾回收起來   stream.chunks[0].chunk = nil   // 移除chunk   stream.chunks = stream.chunks[1:]  }  ......  // 如果stream中的所有chunk都被清空了,則清空該 stream 的相關(guān)數(shù)據(jù)  if mayRemoveStream && len(stream.chunks) == 0 {   delete(instance.streamsByFP, stream.fp)   delete(instance.streams, stream.labelsString)   instance.index.Delete(stream.labels, stream.fp)   ......  } }

關(guān)于存儲(chǔ)或者查詢等模塊的實(shí)現(xiàn)在后文再繼續(xù)探索,包括 WAL 的實(shí)現(xiàn)也較為復(fù)雜。

“Loki 的作用是什么”的內(nèi)容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業(yè)相關(guān)的知識(shí)可以關(guān)注創(chuàng)新互聯(lián)網(wǎng)站,小編將為大家輸出更多高質(zhì)量的實(shí)用文章!


網(wǎng)頁標(biāo)題:Loki的作用是什么
網(wǎng)站URL:http://weahome.cn/article/pdpeeo.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部