不同 Python 數(shù)據(jù)類型的搜尋
專注于為中小企業(yè)提供成都網(wǎng)站建設(shè)、成都網(wǎng)站制作服務(wù),電腦端+手機(jī)端+微信端的三站合一,更高效的管理,為中小企業(yè)昔陽免費(fèi)做網(wǎng)站提供優(yōu)質(zhì)的服務(wù)。我們立足成都,凝聚了一批互聯(lián)網(wǎng)行業(yè)人才,有力地推動了上千家企業(yè)的穩(wěn)健成長,幫助中小企業(yè)通過網(wǎng)站建設(shè)實(shí)現(xiàn)規(guī)模擴(kuò)充和轉(zhuǎn)變。
語言: Python 3.7.2
系統(tǒng): Win10 Ver. 10.0.17763
主題: 004.01 不同 Python 數(shù)據(jù)類型的搜尋
最近在做資料搜索比對的案子的時候,發(fā)現(xiàn)大量的數(shù)據(jù)在搜索比對時,速度變的非常慢,慢到完全無法接受,我想要的是 ' 立即 ' 有結(jié)果,結(jié)果卻是要等好幾小時,暈!雖然以 Python 來說,肯定比不上 C 或 Assembly 語言,但是還是要想辦法提升一下速度。以下是在一萬筆數(shù)據(jù)中,找一萬筆數(shù)據(jù)的各種方法以及所需的時間,雖然最后一個方法 index_list_sort(), 速度快了多,但是我還是覺得不夠快,而且這里還只是整數(shù)的搜索,如果是字符串呢?如果是副字符串呢?各位如果有更好的方法,也請?zhí)崾?,謝謝!
結(jié)果:
0:00:04.734338 : index_sequence
0:00:01.139984 : index_list
0:00:00.330116 : index_np
0:00:00.233343 : index_np_sort
0:00:00.223401 : index_dict
0:00:00.213462 : index_set
0:00:00.007977 : index_list_sort
代碼:
代碼:from datetime import datetime
import numpy as np
import bisect
import time
import random
import inspect
import copy
size = 10000
value = size-1
db = random.sample(range(size), size)
db_sort = copy.deepcopy(db)
db_sort.sort()
db_set = set(db)
db_dict = {db[i]:i for i in range(size)}
db_np = np.array(db)
value = [i for i in range(size)]
def call(func):
# Call function and calculate execution time, then print duration and function name
start_time = datetime.now()
func()
print(datetime.now() - start_time,':',func.__name__)
def do_something():
# Do something here, it may get duration different when multi-loop method used
for i in range(1000):
pass
def index_sequence():
# List unsort and just by Python without any method used or built-in function.
for i in range(size):
for j in range(size):
if value[j] == db[i]:
index = j
do_something()
break
def index_list():
# Unsorted list, use list.index()
for i in range(size):
try:
index = db.index(value[i])
except:
index = -1
if index >= 0:
do_something()
def index_np():
# By using numpy and np(where)
for i in range(size):
result = np.where(db_np==value[i])
if len(result[0])!=0:
do_something()
def index_np_sort():
# By using numpy and sorted numpy array
for i in range(size):
result = np.searchsorted(db_np, value[i])
if result != size:
do_something()
def index_list_sort():
# By using bisect library
for i in range(size):
index = bisect.bisect_left(db, value[i])
if index < size-1 and value[index]==db[index]:
do_something()
def index_set():
# Set serach
for i in range(size):
if value[i] in db_set:
do_something()
def index_dict():
# Dictionary search
for i in range(size):
try:
index = db_dict[value[i]]
except:
index = -1
if index >= 0:
do_something()
call(index_sequence)
call(index_list)
call(index_np)
call(index_np_sort)
call(index_dict)
call(index_set)
call(index_list_sort)復(fù)制代碼 database search