小編給大家分享一下python超參數(shù)怎么優(yōu)化,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!
站在用戶的角度思考問題,與客戶深入溝通,找到丘北網(wǎng)站設(shè)計(jì)與丘北網(wǎng)站推廣的解決方案,憑借多年的經(jīng)驗(yàn),讓設(shè)計(jì)與互聯(lián)網(wǎng)技術(shù)結(jié)合,創(chuàng)造個性化、用戶體驗(yàn)好的作品,建站類型包括:成都網(wǎng)站設(shè)計(jì)、成都網(wǎng)站建設(shè)、企業(yè)官網(wǎng)、英文網(wǎng)站、手機(jī)端網(wǎng)站、網(wǎng)站推廣、國際域名空間、虛擬主機(jī)、企業(yè)郵箱。業(yè)務(wù)覆蓋丘北地區(qū)。
1、手動調(diào)參,但這種方法依賴于大量的經(jīng)驗(yàn),而且比較費(fèi)時。
許多情況下,工程師依靠試錯法手工調(diào)整超參數(shù)進(jìn)行優(yōu)化,有經(jīng)驗(yàn)的工程師可以在很大程度上判斷如何設(shè)置超參數(shù),從而提高模型的準(zhǔn)確性。
2、網(wǎng)格化尋優(yōu),是最基本的超參數(shù)優(yōu)化方法。
利用這種技術(shù),我們只需要為所有超參數(shù)的可能性建立一個獨(dú)立的模型,評估每個模型的性能,選擇產(chǎn)生最佳結(jié)果的模型和超參數(shù)。
from sklearn.datasets import load_iris from sklearn.svm import SVC iris = load_iris() svc = SVR() from sklearn.model_selection import GridSearchCV from sklearn.svm import SVR grid = GridSearchCV( estimator=SVR(kernel='rbf'), param_grid={ 'C': [0.1, 1, 100, 1000], 'epsilon': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 'gamma': [0.0001, 0.001, 0.005, 0.1, 1, 3, 5] }, cv=5, scoring='neg_mean_squared_error', verbose=0, n_jobs=-1)
3、隨機(jī)尋優(yōu),可以更準(zhǔn)確地確定某些重要超參數(shù)的最佳值。
并非所有的超參數(shù)都有同樣的重要性,有些超參數(shù)的作用更加明顯。
以上是“python超參數(shù)怎么優(yōu)化”這篇文章的所有內(nèi)容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內(nèi)容對大家有所幫助,如果還想學(xué)習(xí)更多知識,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道!