真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

tensorflow中tf.matrix_diag和tf.matrix_inverse的用法

tensorflow中tf.matrix_diag和tf.matrix_inverse的用法,很多新手對此不是很清楚,為了幫助大家解決這個難題,下面小編將為大家詳細講解,有這方面需求的人可以來學習下,希望你能有所收獲。

創(chuàng)新互聯(lián)建站長期為上千家客戶提供的網(wǎng)站建設服務,團隊從業(yè)經(jīng)驗10年,關注不同地域、不同群體,并針對不同對象提供差異化的產(chǎn)品和服務;打造開放共贏平臺,與合作伙伴共同營造健康的互聯(lián)網(wǎng)生態(tài)環(huán)境。為巨鹿企業(yè)提供專業(yè)的成都網(wǎng)站制作、做網(wǎng)站,巨鹿網(wǎng)站改版等技術服務。擁有十余年豐富建站經(jīng)驗和眾多成功案例,為您定制開發(fā)。

1.tf.matrix_diag(dia):輸入?yún)?shù)是dia,如果輸入時一個向量,那就生成二維的對角矩陣,以此類推

2.tf.matrix_inverse(A):輸入如果是一個矩陣,就是得到逆矩陣,依次類推,只是輸入的A中的元素需要是浮點數(shù),比如tf.float32等格式,如果是整形,就會出錯哈。

例如:

矩陣(二維張量)

import tensorflow as tf;
 
A = [1, 2, 3]
B = tf.matrix_diag(A)
print B.eval(session=tf.Session())
 
B = tf.cast(B, tf.float32)
C = tf.matrix_inverse(B)
print C.eval(session=tf.Session())

輸出:
[[1 0 0]
 [0 2 0]
 [0 0 3]]
[[ 1.          0.          0.        ]
 [ 0.          0.5         0.        ]
 [ 0.          0.          0.33333334]]


三維數(shù)組(三維張量)
import tensorflow as tf;
 
A = [[1, 2, 3]]
B = tf.matrix_diag(A)
print B.eval(session=tf.Session())
 
B = tf.cast(B, tf.float32)
C = tf.matrix_inverse(B)
print C.eval(session=tf.Session())


輸出:
[[[1 0 0]
  [0 2 0]
  [0 0 3]]]
[[[ 1.          0.          0.        ]
  [ 0.          0.5         0.        ]
  [ 0.          0.          0.33333334]]]

---------------------

看完上述內(nèi)容是否對您有幫助呢?如果還想對相關知識有進一步的了解或閱讀更多相關文章,請關注創(chuàng)新互聯(lián)行業(yè)資訊頻道,感謝您對創(chuàng)新互聯(lián)的支持。


網(wǎng)頁題目:tensorflow中tf.matrix_diag和tf.matrix_inverse的用法
URL標題:http://weahome.cn/article/pecico.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部