真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

react高階組件和ES6裝飾器的使用示例

這篇文章主要介紹了react高階組件和ES6裝飾器的使用示例,具有一定借鑒價值,需要的朋友可以參考下。希望大家閱讀完這篇文章后大有收獲。下面讓小編帶著大家一起了解一下。

專注于為中小企業(yè)提供網(wǎng)站建設、網(wǎng)站制作服務,電腦端+手機端+微信端的三站合一,更高效的管理,為中小企業(yè)永和免費做網(wǎng)站提供優(yōu)質的服務。我們立足成都,凝聚了一批互聯(lián)網(wǎng)行業(yè)人才,有力地推動了近千家企業(yè)的穩(wěn)健成長,幫助中小企業(yè)通過網(wǎng)站建設實現(xiàn)規(guī)模擴充和轉變。

一 裝飾者模式

優(yōu)先使用對象組合而不是類繼承。 --《設計模式》

1.什么是裝飾者模式

定義:動態(tài)的給對象添加一些額外的屬性或行為。相比于使用繼承,裝飾者模式更加靈活。

2.裝飾者模式參與者

Component:裝飾者和被裝飾者共同的父類,是一個接口或者抽象類,用來定義基本行為
ConcreteComponent:定義具體對象,即被裝飾者
Decorator:抽象裝飾者,繼承自Component,從外類來擴展ConcreteComponent。對于ConcreteComponent來說,不需要知道Decorator的存在,Decorator是一個接口或抽象類
ConcreteDecorator:具體裝飾者,用于擴展ConcreteComponent
注:裝飾者和被裝飾者對象有相同的超類型,因為裝飾者和被裝飾者必須是一樣的類型,這里利用繼承是為了達到類型匹配,而不是利用繼承獲得行為。

利用繼承設計子類,只能在編譯時靜態(tài)決定,并且所有子類都會繼承相同的行為;利用組合的做法擴展對象,就可以在運行時動態(tài)的進行擴展。裝飾者模式遵循開放-關閉原則:類應該對擴展開放,對修改關閉。利用裝飾者,我們可以實現(xiàn)新的裝飾者增加新的行為而不用修改現(xiàn)有代碼,而如果單純依賴繼承,每當需要新行為時,還得修改現(xiàn)有的代碼。

  1. javascript 如何使用裝飾者模式

javascript 動態(tài)語言的特性使得使用裝飾器模式十分的簡單,文章主要內容會介紹兩種使用裝飾者模式的實際例子。

二 react高階組件

我們都知道高階函數(shù)是什么, 高階組件其實是差不多的用法,只不過傳入的參數(shù)變成了react組件,并返回一個新的組件.

A higher-order component is a function that takes a component and returns a new component.

形如:

const EnhancedComponent = higherOrderComponent(WrappedComponent);

高階組件是react應用中很重要的一部分,最大的特點就是重用組件邏輯。它并不是由React API定義出來的功能,而是由React的組合特性衍生出來的一種設計模式。
如果你用過redux,那你就一定接觸過高階組件,因為react-redux中的connect就是一個高階組件。

先來一個最簡單的高階組件

import React, { Component } from 'react';
import simpleHoc from './simple-hoc';

class Usual extends Component {
  render() {
    console.log(this.props, 'props');
    return (
      
Usual
) } } export default simpleHoc(Usual); import React, { Component } from 'react'; const simpleHoc = WrappedComponent => { console.log('simpleHoc'); return class extends Component { render() { return } } } export default simpleHoc;

組件Usual通過simpleHoc的包裝,打了一個log... 那么形如simpleHoc就是一個高階組件了,通過接收一個組件class Usual,并返回一個組件class。 其實我們可以看到,在這個函數(shù)里,我們可以做很多操作。 而且return的組件同樣有自己的生命周期,function,另外,我們看到也可以把props傳給WrappedComponent(被包裝的組件)。

實現(xiàn)高階組件的方法有兩種
屬性代理(props proxy)。高階組件通過被包裹的 React 組件來操作 props。
反向繼承(inheritance inversion)。高階組件繼承于被包裹的 React 組件。

屬性代理
引入里我們寫的最簡單的形式,就是屬性代理(Props Proxy)的形式。通過hoc包裝wrappedComponent,也就是例子中的Usual,本來傳給Usual的props,都在hoc中接受到了,也就是props proxy。 由此我們可以做一些操作

1.操作props
最直觀的就是接受到props,我們可以做任何讀取,編輯,刪除的很多自定義操作。包括hoc中定義的自定義事件,都可以通過props再傳下去。

import React, { Component } from 'react';
const propsProxyHoc = WrappedComponent => class extends Component {
handleClick() {
console.log('click');
}
render() {
return ();
}
};
export default propsProxyHoc;

然后我們的Usual組件render的時候, console.log(this.props) 會得到handleClick.

2.refs獲取組件實例
當我們包裝Usual的時候,想獲取到它的實例怎么辦,可以通過引用(ref),在Usual組件掛載的時候,會執(zhí)行ref的回調函數(shù),在hoc中取到組件的實例。

import React, { Component } from 'react';
const refHoc = WrappedComponent => class extends Component {
componentDidMount() {
console.log(this.instanceComponent, 'instanceComponent');
}
render() {
return ( this.instanceComponent = instanceComponent}
/>);
}
};
export default refHoc;

3.抽離state
這里不是通過ref獲取state, 而是通過 { props, 回調函數(shù) } 傳遞給wrappedComponent組件,通過回調函數(shù)獲取state。這里用的比較多的就是react處理表單的時候。通常react在處理表單的時候,一般使用的是受控組件(文檔),即把input都做成受控的,改變value的時候,用onChange事件同步到state中。當然這種操作通過Container組件也可以做到,具體的區(qū)別放到后面去比較??匆幌麓a就知道怎么回事了:

import React, { Component } from 'React';
const MyContainer = (WrappedComponent) => class extends Component {
    constructor(props) { super(props); 
        this.state = {
              name: '', 4 
        };
        this.onNameChange = this.onNameChange.bind(this); 
    }
    onNameChange(event) { 
        this.setState({
            name: event.target.value, 
        })
    }
    render() {
        const newProps = {
            name: {
                value: this.state.name, 
                onChange: this.onNameChange,
            },
        } 
        return ; 
    }
}

在這個例子中,我們把 input 組件中對 name prop 的 onChange 方法提取到高階組件中,這樣就有效地抽象了同樣的 state 操作。

反向繼承

const MyContainer = (WrappedComponent) => class extends WrappedComponent {
    render() {
        return super.render();
    } 
}

正如所見,高階組件返回的組件繼承于 WrappedComponent。因為被動地繼承了 WrappedCom- ponent,所有的調用都會反向,這也是這種方法的由來。
這種方法與屬性代理不太一樣。它通過繼承 WrappedComponent 來實現(xiàn),方法可以通過 super 來順序調用。因為依賴于繼承的機制,HOC 的調用順序和隊列是一樣的:

didmount→HOC didmount→(HOCs didmount)→will unmount→HOC will unmount→(HOCs will unmount)

在反向繼承方法中,高階組件可以使用 WrappedComponent 引用,這意味著它可以使用WrappedComponent 的 state、props 、生命周期和 render 方法。但它不能保證完整的子組件樹被解析。

1.渲染劫持
渲染劫持指的就是高階組件可以控制 WrappedComponent 的渲染過程,并渲染各種各樣的結 果。我們可以在這個過程中在任何 React 元素輸出的結果中讀取、增加、修改、刪除 props,或 讀取或修改 React 元素樹,或條件顯示元素樹,又或是用樣式控制包裹元素樹。
正如之前說到的,反向繼承不能保證完整的子組件樹被解析,這意味著將限制渲染劫持功能。 渲染劫持的經(jīng)驗法則是我們可以操控 WrappedComponent 的元素樹,并輸出正確的結果。但如果 元素樹中包括了函數(shù)類型的 React 組件,就不能操作組件的子組件。
我們先來看條件渲染的示例:

const MyContainer = (WrappedComponent) => class extends WrappedComponent {
render() {
    if (this.props.loggedIn) {
        return super.render(); 
    } else {
        return null;
     }
   }
 }

第二個示例是我們可以對 render 的輸出結果進行修改:

const MyContainer = (WrappedComponent) => class extends WrappedComponent {
  render() {
    const elementsTree = super.render();
    let newProps = {};
    if (elementsTree && elementsTree.type === 'input') { 
        newProps = {value: 'may the force be with you'};
    }
    const props = Object.assign({}, elementsTree.props, newProps);
    const newElementsTree = React.cloneElement(elementsTree, props, elementsTree.props.children); 
    return newElementsTree;
  } 
}

在這個例子中,WrappedComponent 的渲染結果中,頂層的 input 組件的 value 被改寫為 may the force be with you。因此,我們可以做各種各樣的事,甚至可以反轉元素樹,或是改變元素 樹中的 props。這也是 Radium 庫構造的方法。

2.控制state
高階組件可以讀取、修改或刪除 WrappedComponent 實例中的 state,如果需要的話,也可以 增加 state。但這樣做,可能會讓 WrappedComponent 組件內部狀態(tài)變得一團糟。大部分的高階組 件都應該限制讀取或增加 state,尤其是后者,可以通過重新命名 state,以防止混淆。
我們來看一個例子:

const MyContainer = (WrappedComponent) => class extends WrappedComponent {
 render() { 
    return (
        

HOC Debugger Component

Props

{JSON.stringify(this.props, null, 2)}

State

{JSON.stringify(this.state, null, 2)}
{super.render()}

); } }

在這個例子中,顯示了 WrappedComponent 的 props 和 state,以方便我們在程序中去調試它們。

三 ES6 裝飾器

高階組件可以看做是裝飾器模式(Decorator Pattern)在React的實現(xiàn)。即允許向一個現(xiàn)有的對象添加新的功能,同時又不改變其結構,屬于包裝模式(Wrapper Pattern)的一種
ES7中添加了一個decorator的屬性,使用@符表示,可以更精簡的書寫。那上面的例子就可以改成:

import React, { Component } from 'react';
import simpleHoc from './simple-hoc';

@simpleHoc
export default class Usual extends Component {
  render() {
    return (
      

Usual

) } } //simple-hoc const simpleHoc = WrappedComponent => { console.log('simpleHoc'); return class extends Component { render() { return } } }

和高階組件是同樣的效果。

類的裝飾

@testable
class MyTestableClass {
  // ...
}

function testable(target) {
  target.isTestable = true;
}

MyTestableClass.isTestable // true

上面代碼中,@testable 就是一個裝飾器。它修改了 MyTestableClass這 個類的行為,為它加上了靜態(tài)屬性isTestable。testable 函數(shù)的參數(shù) target 是 MyTestableClass 類本身。

如果覺得一個參數(shù)不夠用,可以在裝飾器外面再封裝一層函數(shù)。

function testable(isTestable) {
  return function(target) {
    target.isTestable = isTestable;
  }
}

@testable(true)
class MyTestableClass {}
MyTestableClass.isTestable // true

@testable(false)
class MyClass {}
MyClass.isTestable // false

上面代碼中,裝飾器 testable 可以接受參數(shù),這就等于可以修改裝飾器的行為。

方法的裝飾
裝飾器不僅可以裝飾類,還可以裝飾類的屬性。

class Person {
  @readonly
  name() { return `${this.first} ${this.last}` }
}

上面代碼中,裝飾器 readonly 用來裝飾“類”的name方法。
裝飾器函數(shù) readonly 一共可以接受三個參數(shù)。

function readonly(target, name, descriptor){
  // descriptor對象原來的值如下
  // {
  //   value: specifiedFunction,
  //   enumerable: false,
  //   configurable: true,
  //   writable: true
  // };
  descriptor.writable = false;
  return descriptor;
}

readonly(Person.prototype, 'name', descriptor);
// 類似于
Object.defineProperty(Person.prototype, 'name', descriptor);

裝飾器第一個參數(shù)是 類的原型對象,上例是 Person.prototype,裝飾器的本意是要“裝飾”類的實例,但是這個時候實例還沒生成,所以只能去裝飾原型(這不同于類的裝飾,那種情況時target參數(shù)指的是類本身);
第二個參數(shù)是 所要裝飾的屬性名
第三個參數(shù)是 該屬性的描述對象
另外,上面代碼說明,裝飾器(readonly)會修改屬性的 描述對象(descriptor),然后被修改的描述對象再用來定義屬性。

四 更加抽象的裝飾

ES5 中,mixin 為 object 提供功能“混合”能力,由于 JavaScript 的原型繼承機制,通過 mixin 一個或多個對象到構造器的 prototype上,能夠間接提供為“類”的實例混合功能的能力。

下面是例子:

function mixin(...objs){
    return objs.reduce((dest, src) => {
        for (var key in src) {
            dest[key] = src[key]
        }
        return dest;    
    });
}

function createWithPrototype(Cls){
    var P = function(){};
    P.prototype = Cls.prototype;
    return new P();
}

function Person(name, age, gender){
    this.name = name;
    this.age = age;
    this.gender = gender;
}

function Employee(name, age, gender, level, salary){
    Person.call(this, name, age, gender);
    this.level = level;
    this.salary = salary;
}

Employee.prototype = createWithPrototype(Person);

mixin(Employee.prototype, {
    getSalary: function(){
        return this.salary;
    }
});

function Serializable(Cls, serializer){
    mixin(Cls, serializer);
    this.toString = function(){
        return Cls.stringify(this);
    } 
}

mixin(Employee.prototype, new Serializable(Employee, {
        parse: function(str){
            var data = JSON.parse(str);
            return new Employee(
                data.name,
                data.age,
                data.gender,
                data.level,
                data.salary
            );
        },
        stringify: function(employee){
            return JSON.stringify({
                name: employee.name,
                age: employee.age,
                gender: employee.gender,
                level: employee.level,
                salary: employee.salary
            });
        }
    })
);

從一定程度上,mixin 彌補了 JavaScript 單一原型鏈的缺陷,可以實現(xiàn)類似于多重繼承的效果。在上面的例子里,我們讓 Employee “繼承” Person,同時也“繼承” Serializable。有趣的是我們通過 mixin Serializable 讓 Employee 擁有了 stringify 和 parse 兩個方法,同時我們改寫了 Employee 實例的 toString 方法。

我們可以如下使用上面定義的類:

var employee = new Employee("jane",25,"f",1,1000);
var employee2 = Employee.parse(employee+""); //通過序列化反序列化復制對象

console.log(employee2, 
    employee2 instanceof Employee,    //true 
    employee2 instanceof Person,    //true
    employee == employee2);        //false

ES6 中的 mixin 式繼承
在 ES6 中,我們可以采用全新的基于類繼承的 “mixin” 模式設計更優(yōu)雅的“語義化”接口,這是因為 ES6 中的 extends 可以繼承動態(tài)構造的類,這一點和其他的靜態(tài)聲明類的編程語言不同,在說明它的好處之前,我們先看一下 ES6 中如何更好地實現(xiàn)上面 ES5 代碼里的 Serializable:

用繼承實現(xiàn) Serializable

class Serializable{
  constructor(){
    if(typeof this.constructor.stringify !== "function"){
      throw new ReferenceError("Please define stringify method to the Class!");
    }
    if(typeof this.constructor.parse !== "function"){
      throw new ReferenceError("Please define parse method to the Class!");
    }
  }
  toString(){
    return this.constructor.stringify(this);
  }
}

class Person extends Serializable{
  constructor(name, age, gender){
    super();
    Object.assign(this, {name, age, gender});
  }
}

class Employee extends Person{
  constructor(name, age, gender, level, salary){
    super(name, age, gender);
    this.level = level;
    this.salary = salary;
  }
  static stringify(employee){
    let {name, age, gender, level, salary} = employee;
    return JSON.stringify({name, age, gender, level, salary});
  }
  static parse(str){
    let {name, age, gender, level, salary} = JSON.parse(str);
    return new Employee(name, age, gender, level, salary);
  }
}

let employee = new Employee("jane",25,"f",1,1000);
let employee2 = Employee.parse(employee+""); //通過序列化反序列化復制對象

console.log(employee2, 
  employee2 instanceof Employee,  //true 
  employee2 instanceof Person,  //true
  employee == employee2);   //false
上面的代碼,我們用 ES6 的類繼承實現(xiàn)了 Serializable,與 ES5 的實現(xiàn)相比,它非常簡單,首先我們設計了一個 Serializable 類:

class Serializable{
  constructor(){
    if(typeof this.constructor.stringify !== "function"){
      throw new ReferenceError("Please define stringify method to the Class!");
    }
    if(typeof this.constructor.parse !== "function"){
      throw new ReferenceError("Please define parse method to the Class!");
    }
  }
  toString(){
    return this.constructor.stringify(this);
  }
}

它檢查當前實例的類上是否有定義 stringify 和 parse 靜態(tài)方法,如果有,使用靜態(tài)方法重寫 toString 方法,如果沒有,則在實例化對象的時候拋出一個異常。

這么設計挺好的,但它也有不足之處,首先注意到我們將 stringify 和 parse 定義到 Employee 上,這沒有什么問題,但是如果我們實例化 Person,它將報錯:

let person = new Person("john", 22, "m");
//Uncaught ReferenceError: Please define stringify method to the Class!

這是因為我們沒有在 Person 上定義 parse 和 stringify 方法。因為 Serializable 是一個基類,在只支持單繼承的 ES6 中,如果我們不需要 Person 可序列化,只需要 Person 的子類 Employee 可序列化,靠這種繼承鏈是做不到的。

另外,如何用 Serializable 讓 JS 原生類的子類(比如 Set、Map)可序列化?

所以,我們需要考慮改變一下我們的設計模式:

用 mixin 實現(xiàn) Serilizable

const Serializable = Sup => class extends Sup {
  constructor(...args){
    super(...args);
    if(typeof this.constructor.stringify !== "function"){
      throw new ReferenceError("Please define stringify method to the Class!");
    }
    if(typeof this.constructor.parse !== "function"){
      throw new ReferenceError("Please define parse method to the Class!");
    }
  }
  toString(){
    return this.constructor.stringify(this);
  }
}

class Person {
  constructor(name, age, gender){
    Object.assign(this, {name, age, gender});
  }
}

class Employee extends Serializable(Person){
  constructor(name, age, gender, level, salary){
    super(name, age, gender);
    this.level = level;
    this.salary = salary;
  }
  static stringify(employee){
    let {name, age, gender, level, salary} = employee;
    return JSON.stringify({name, age, gender, level, salary});
  }
  static parse(str){
    let {name, age, gender, level, salary} = JSON.parse(str);
    return new Employee(name, age, gender, level, salary);
  }
}

let employee = new Employee("jane",25,"f",1,1000);
let employee2 = Employee.parse(employee+""); //通過序列化反序列化復制對象

console.log(employee2, 
  employee2 instanceof Employee,  //true 
  employee2 instanceof Person,  //true
  employee == employee2);   //false

在上面的代碼里,我們改變了 Serializable,讓它成為一個動態(tài)返回類型的函數(shù),然后我們通過 class Employ extends Serializable(Person) 來實現(xiàn)可序列化,在這里我們沒有可序列化 Person 本身,而將 Serializable 在語義上變成一種修飾,即 Employee 是一種可序列化的 Person。于是,我們要 new Person 就不會報錯了:

let person = new Person("john", 22, "m"); 
//Person {name: "john", age: 22, gender: "m"}

這么做了之后,我們還可以實現(xiàn)對原生類的繼承,例如:

繼承原生的 Set 類

const Serializable = Sup => class extends Sup {
  constructor(...args){
    super(...args);
    if(typeof this.constructor.stringify !== "function"){
      throw new ReferenceError("Please define stringify method to the Class!");
    }
    if(typeof this.constructor.parse !== "function"){
      throw new ReferenceError("Please define parse method to the Class!");
    }
  }
  toString(){
    return this.constructor.stringify(this);
  }
}

class MySet extends Serializable(Set){
  static stringify(s){
    return JSON.stringify([...s]);
  }
  static parse(data){
    return new MySet(JSON.parse(data));
  }
}

let s1 = new MySet([1,2,3,4]);
let s2 = MySet.parse(s1 + "");
console.log(s2,         //Set{1,2,3,4}
            s1 == s2);  //false

通過 MySet 繼承 Serializable(Set),我們得到了一個可序列化的 Set 類!同樣我們還可以實現(xiàn)可序列化的 Map:

class MyMap extends Serializable(Map){
    ...
    static stringify(map){
        ...
    }
    static parse(str){
        ...
    }
}

如果不用 mixin 模式而使用繼承,我們就得分別定義不同的類來對應 Set 和 Map 的繼承,而用了 mixin 模式,我們構造出了通用的 Serializable,它可以用來“修飾”任何對象。

我們還可以定義其他的“修飾符”,然后將它們組合使用,比如:

const Serializable = Sup => class extends Sup {
  constructor(...args){
    super(...args);
    if(typeof this.constructor.stringify !== "function"){
      throw new ReferenceError("Please define stringify method to the Class!");
    }
    if(typeof this.constructor.parse !== "function"){
      throw new ReferenceError("Please define parse method to the Class!");
    }
  }
  toString(){
    return this.constructor.stringify(this);
  }
}

const Immutable = Sup => class extends Sup {
  constructor(...args){
    super(...args);
    Object.freeze(this);
  }
}

class MyArray extends Immutable(Serializable(Array)){
  static stringify(arr){
    return JSON.stringify({Immutable:arr});
  }
  static parse(data){
    return new MyArray(...JSON.parse(data).Immutable);
  }
}

let arr1 = new MyArray(1,2,3,4);
let arr2 = MyArray.parse(arr1 + "");
console.log(arr1, arr2, 
    arr1+"",     //{"Immutable":[1,2,3,4]}
    arr1 == arr2);

arr1.push(5); //throw Error!

上面的例子里,我們通過 Immutable 修飾符定義了一個不可變數(shù)組,同時通過 Serializable 修飾符修改了它的序列化存儲方式,而這一切,通過定義 class MyArray extends Immutable(Serializable(Array)) 來實現(xiàn)。

感謝你能夠認真閱讀完這篇文章,希望小編分享react高階組件和ES6裝飾器的使用示例內容對大家有幫助,同時也希望大家多多支持創(chuàng)新互聯(lián),關注創(chuàng)新互聯(lián)行業(yè)資訊頻道,遇到問題就找創(chuàng)新互聯(lián),詳細的解決方法等著你來學習!


名稱欄目:react高階組件和ES6裝飾器的使用示例
分享鏈接:http://weahome.cn/article/peespg.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部