library(randomForest) data(iris) set.seed(100) ind<-sample(2,nrow(iris),replace=TRUE,prob=c(0.7,0.3))#對數(shù)據(jù)分成兩部分,70%訓練數(shù)據(jù),30%檢測數(shù)據(jù)/ traindata<-iris[ind==1,] testdata<- iris[ind==2,] iris.rf=randomForest(Species~.,iris[ind==1,],ntree=50,nPerm=10,mtry=3,proximity=TRUE,importance=TRUE) print(iris.rf) iris.pred=predict( iris.rf,iris[ind==2,]) table(observed=iris[ind==2,"Species"],predicted=iris.pred)