真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

html5中怎么用Canvas繪制橢圓

本篇內(nèi)容主要講解“html5中怎么用Canvas繪制橢圓”,感興趣的朋友不妨來(lái)看看。本文介紹的方法操作簡(jiǎn)單快捷,實(shí)用性強(qiáng)。下面就讓小編來(lái)帶大家學(xué)習(xí)“html5中怎么用Canvas繪制橢圓”吧!

創(chuàng)新互聯(lián)憑借在網(wǎng)站建設(shè)、網(wǎng)站推廣領(lǐng)域領(lǐng)先的技術(shù)能力和多年的行業(yè)經(jīng)驗(yàn),為客戶(hù)提供超值的營(yíng)銷(xiāo)型網(wǎng)站建設(shè)服務(wù),我們始終認(rèn)為:好的營(yíng)銷(xiāo)型網(wǎng)站就是好的業(yè)務(wù)員。我們已成功為企業(yè)單位、個(gè)人等客戶(hù)提供了做網(wǎng)站、成都做網(wǎng)站服務(wù),以良好的商業(yè)信譽(yù),完善的服務(wù)及深厚的技術(shù)力量處于同行領(lǐng)先地位。

概述

HTML5中的Canvas并沒(méi)有直接提供繪制橢圓的方法,下面是對(duì)幾種繪制方法的總結(jié)。各種方法各有優(yōu)缺,視情況選用。各方法的參數(shù)相同:

context為Canvas的2D繪圖環(huán)境對(duì)象,

x為橢圓中心橫坐標(biāo),

y為橢圓中心縱坐標(biāo),

a為橢圓橫半軸長(zhǎng),

b為橢圓縱半軸長(zhǎng)。

參數(shù)方程法

該方法利用橢圓的參數(shù)方程來(lái)繪制橢圓

復(fù)制代碼 代碼如下:

//-----------用參數(shù)方程繪制橢圓---------------------

//函數(shù)的參數(shù)x,y為橢圓中心;a,b分別為橢圓橫半軸、

//縱半軸長(zhǎng)度,不可同時(shí)為0

//該方法的缺點(diǎn)是,當(dāng)linWidth較寬,橢圓較扁時(shí)

//橢圓內(nèi)部長(zhǎng)軸端較為尖銳,不平滑,效率較低

function ParamEllipse(context, x, y, a, b)

{

//max是等于1除以長(zhǎng)軸值a和b中的較大者

//i每次循環(huán)增加1/max,表示度數(shù)的增加

//這樣可以使得每次循環(huán)所繪制的路徑(弧線)接近1像素

var step = (a > b) ? 1 / a : 1 / b;

context.beginPath();

context.moveTo(x + a, y); //從橢圓的左端點(diǎn)開(kāi)始繪制

for (var i = 0; i < 2 * Math.PI; i += step)

{

//參數(shù)方程為x = a * cos(i), y = b * sin(i),

//參數(shù)為i,表示度數(shù)(弧度)

context.lineTo(x + a * Math.cos(i), y + b * Math.sin(i));

}

context.closePath();

context.stroke();

};

均勻壓縮法

這種方法利用了數(shù)學(xué)中的均勻壓縮原理將圓進(jìn)行均勻壓縮為橢圓,理論上為能夠得到標(biāo)準(zhǔn)的橢圓.下面的代碼會(huì)出現(xiàn)線寬不一致的問(wèn)題,解決辦法看5樓simonleung的評(píng)論。

復(fù)制代碼 代碼如下:

//------------均勻壓縮法繪制橢圓--------------------

//其方法是用arc方法繪制圓,結(jié)合scale進(jìn)行

//橫軸或縱軸方向縮放(均勻壓縮)

//這種方法繪制的橢圓的邊離長(zhǎng)軸端越近越粗,長(zhǎng)軸端點(diǎn)的線寬是正常值

//邊離短軸越近、橢圓越扁越細(xì),甚至產(chǎn)生間斷,這是scale導(dǎo)致的結(jié)果

//這種缺點(diǎn)某些時(shí)候是優(yōu)點(diǎn),比如在表現(xiàn)環(huán)的立體效果(行星光環(huán))時(shí)

//對(duì)于參數(shù)a或b為0的情況,這種方法不適用

function EvenCompEllipse(context, x, y, a, b)

{

context.save();

//選擇a、b中的較大者作為arc方法的半徑參數(shù)

var r = (a > b) ? a : b;

var ratioX = a / r; //橫軸縮放比率

var ratioY = b / r; //縱軸縮放比率

context.scale(ratioX, ratioY); //進(jìn)行縮放(均勻壓縮)

context.beginPath();

//從橢圓的左端點(diǎn)開(kāi)始逆時(shí)針繪制

context.moveTo((x + a) / ratioX, y / ratioY);

context.arc(x / ratioX, y / ratioY, r, 0, 2 * Math.PI);

context.closePath();

context.stroke();

context.restore();

};

三次貝塞爾曲線法一

三次貝塞爾曲線繪制橢圓在實(shí)際繪制時(shí)是一種近似,在理論上也是一種近似。 但因?yàn)槠湫瘦^高,在計(jì)算機(jī)矢量圖形學(xué)中,常用于繪制橢圓,但是具體的理論我不是很清楚。 近似程度在于兩個(gè)控制點(diǎn)位置的選取。這種方法的控制點(diǎn)位置是我自己試驗(yàn)得出,精度還可以.

復(fù)制代碼 代碼如下:

//---------使用三次貝塞爾曲線模擬橢圓1---------------------

//此方法也會(huì)產(chǎn)生當(dāng)lineWidth較寬,橢圓較扁時(shí),

//長(zhǎng)軸端較尖銳,不平滑的現(xiàn)象

function BezierEllipse1(context, x, y, a, b)

{

//關(guān)鍵是bezierCurveTo中兩個(gè)控制點(diǎn)的設(shè)置

//0.5和0.6是兩個(gè)關(guān)鍵系數(shù)(在本函數(shù)中為試驗(yàn)而得)

var ox = 0.5 * a,

oy = 0.6 * b;

context.save();

context.translate(x, y);

context.beginPath();

//從橢圓縱軸下端開(kāi)始逆時(shí)針?lè)较蚶L制

context.moveTo(0, b);

context.bezierCurveTo(ox, b, a, oy, a, 0);

context.bezierCurveTo(a, -oy, ox, -b, 0, -b);

context.bezierCurveTo(-ox, -b, -a, -oy, -a, 0);

context.bezierCurveTo(-a, oy, -ox, b, 0, b);

context.closePath();

context.stroke();

context.restore();

};

三次貝塞爾曲線法二

這種方法是從StackOverFlow中一個(gè)帖子的回復(fù)中改變而來(lái),精度較高,也是通常用來(lái)繪制橢圓的方法.

復(fù)制代碼 代碼如下:

//---------使用三次貝塞爾曲線模擬橢圓2---------------------

//此方法也會(huì)產(chǎn)生當(dāng)lineWidth較寬,橢圓較扁時(shí)

//,長(zhǎng)軸端較尖銳,不平滑的現(xiàn)象

//這種方法比前一個(gè)貝塞爾方法精確度高,但效率稍差

function BezierEllipse2(ctx, x, y, a, b)

{

var k = .5522848,

ox = a * k, // 水平控制點(diǎn)偏移量

oy = b * k; // 垂直控制點(diǎn)偏移量

ctx.beginPath();

//從橢圓的左端點(diǎn)開(kāi)始順時(shí)針繪制四條三次貝塞爾曲線

ctx.moveTo(x - a, y);

ctx.bezierCurveTo(x - a, y - oy, x - ox, y - b, x, y - b);

ctx.bezierCurveTo(x + ox, y - b, x + a, y - oy, x + a, y);

ctx.bezierCurveTo(x + a, y + oy, x + ox, y + b, x, y + b);

ctx.bezierCurveTo(x - ox, y + b, x - a, y + oy, x - a, y);

ctx.closePath();

ctx.stroke();

};

光柵法

這種方法可以根據(jù)Canvas能夠操作像素的特點(diǎn),利用圖形學(xué)中的基本算法來(lái)繪制橢圓。 例如中點(diǎn)畫(huà)橢圓算法等。

其中一個(gè)例子是園友“豆豆狗”的一篇博文“HTML5 Canvas 提高班(一) —— 光柵圖形學(xué)(1)中點(diǎn)畫(huà)圓算法”。這種方法由于比較“原始”,靈活性大,效率高,精度高,但要想實(shí)現(xiàn)一個(gè)有使用價(jià)值的繪制橢圓的函數(shù),比較復(fù)雜。比如,要當(dāng)線寬改變時(shí),算法就復(fù)雜一些。雖然是畫(huà)圓的算法,但畫(huà)橢圓的算法與之類(lèi)似,可以參考下。

Demo

下面是除光柵法之外,幾個(gè)繪制橢圓函數(shù)的演示,演示代碼如下:

復(fù)制代碼 代碼如下:

注意,要成功運(yùn)行代碼,需要支持HTML5的Canvas的瀏覽器。

到此,相信大家對(duì)“html5中怎么用Canvas繪制橢圓”有了更深的了解,不妨來(lái)實(shí)際操作一番吧!這里是創(chuàng)新互聯(lián)網(wǎng)站,更多相關(guān)內(nèi)容可以進(jìn)入相關(guān)頻道進(jìn)行查詢(xún),關(guān)注我們,繼續(xù)學(xué)習(xí)!


網(wǎng)頁(yè)題目:html5中怎么用Canvas繪制橢圓
文章URL:http://weahome.cn/article/peosjs.html

其他資訊

在線咨詢(xún)

微信咨詢(xún)

電話(huà)咨詢(xún)

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部