kafka是吞吐量巨大的一個(gè)消息系統(tǒng),它是用scala寫的,和普通的消息的生產(chǎn)消費(fèi)還有所不同,寫了個(gè)demo程序供大家參考。kafka的安裝請(qǐng)參考官方文檔。
成都創(chuàng)新互聯(lián)公司是一家以網(wǎng)絡(luò)技術(shù)公司,為中小企業(yè)提供網(wǎng)站維護(hù)、做網(wǎng)站、成都網(wǎng)站建設(shè)、網(wǎng)站備案、服務(wù)器租用、空間域名、軟件開發(fā)、小程序制作等企業(yè)互聯(lián)網(wǎng)相關(guān)業(yè)務(wù),是一家有著豐富的互聯(lián)網(wǎng)運(yùn)營(yíng)推廣經(jīng)驗(yàn)的科技公司,有著多年的網(wǎng)站建站經(jīng)驗(yàn),致力于幫助中小企業(yè)在互聯(lián)網(wǎng)讓打出自已的品牌和口碑,讓企業(yè)在互聯(lián)網(wǎng)上打開一個(gè)面向全國(guó)乃至全球的業(yè)務(wù)窗口:建站服務(wù)熱線:13518219792
首先我們需要新建一個(gè)maven項(xiàng)目,然后在pom中引用kafka jar包,引用依賴如下:
1
2
3
4
5
| |
我們用的版本是0.8, 下面我們看下生產(chǎn)消息的代碼:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
| package cn.outofmemory.kafka;
import java.util.Properties;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
/**
* Hello world!
*
*/
public class KafkaProducer
{
private final Producer public final static String TOPIC = "TEST-TOPIC";
private KafkaProducer(){
Properties props = new Properties();
//此處配置的是kafka的端口
props.put("metadata.broker.list", "192.168.193.148:9092");
//配置value的序列化類
props.put("serializer.class", "kafka.serializer.StringEncoder");
//配置key的序列化類
props.put("key.serializer.class", "kafka.serializer.StringEncoder");
//request.required.acks
//0, which means that the producer never waits for an acknowledgement from the broker (the same behavior as 0.7). This option provides the lowest latency but the weakest durability guarantees (some data will be lost when a server fails).
//1, which means that the producer gets an acknowledgement after the leader replica has received the data. This option provides better durability as the client waits until the server acknowledges the request as successful (only messages that were written to the now-dead leader but not yet replicated will be lost).
//-1, which means that the producer gets an acknowledgement after all in-sync replicas have received the data. This option provides the best durability, we guarantee that no messages will be lost as long as at least one in sync replica remains.
props.put("request.required.acks","-1");
producer = new Producer }
void produce() {
int messageNo = 1000;
final int COUNT = 10000;
while (messageNo < COUNT) {
String key = String.valueOf(messageNo);
String data = "hello kafka message " + key;
producer.send(new KeyedMessage System.out.println(data);
messageNo ++;
}
}
public static void main( String[] args )
{
new KafkaProducer().produce();
}
}
|
下面是消費(fèi)端的代碼實(shí)現(xiàn):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
| package cn.outofmemory.kafka;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.serializer.StringDecoder;
import kafka.utils.VerifiableProperties;
public class KafkaConsumer {
private final ConsumerConnector consumer;
private KafkaConsumer() {
Properties props = new Properties();
//zookeeper 配置
props.put("zookeeper.connect", "192.168.193.148:2181");
//group 代表一個(gè)消費(fèi)組
props.put("group.id", "jd-group");
//zk連接超時(shí)
props.put("zookeeper.session.timeout.ms", "4000");
props.put("zookeeper.sync.time.ms", "200");
props.put("auto.commit.interval.ms", "1000");
props.put("auto.offset.reset", "smallest");
//序列化類
props.put("serializer.class", "kafka.serializer.StringEncoder");
ConsumerConfig config = new ConsumerConfig(props);
consumer = kafka.consumer.Consumer.createJavaConsumerConnector(config);
}
void consume() {
Map topicCountMap.put(KafkaProducer.TOPIC, new Integer(1));
StringDecoder keyDecoder = new StringDecoder(new VerifiableProperties());
StringDecoder valueDecoder = new StringDecoder(new VerifiableProperties());
Map consumer.createMessageStreams(topicCountMap,keyDecoder,valueDecoder);
KafkaStream ConsumerIterator while (it.hasNext())
System.out.println(it.next().message());
}
public static void main(String[] args) {
new KafkaConsumer().consume();
}
}
|
注意消費(fèi)端需要配置成zk的地址,而生產(chǎn)端配置的是kafka的ip和端口。
源碼地址獲取:mingli
有興趣的朋友們可以前往球球哦~一起分享學(xué)習(xí)技術(shù):2042849237