本篇文章給大家分享的是有關(guān)有哪三個大數(shù)據(jù)的來源,小編覺得挺實(shí)用的,因此分享給大家學(xué)習(xí),希望大家閱讀完這篇文章后可以有所收獲,話不多說,跟著小編一起來看看吧。
創(chuàng)新互聯(lián)主營雙江網(wǎng)站建設(shè)的網(wǎng)絡(luò)公司,主營網(wǎng)站建設(shè)方案,app軟件開發(fā)公司,雙江h(huán)5微信平臺小程序開發(fā)搭建,雙江網(wǎng)站營銷推廣歡迎雙江等地區(qū)企業(yè)咨詢1、交易數(shù)據(jù),包括POS機(jī)數(shù)據(jù)、信用卡刷卡數(shù)據(jù)等;
2、人為數(shù)據(jù),包括電子郵件、文檔、圖片以及通過微信、博客、推特等產(chǎn)生的數(shù)據(jù)流;
3、機(jī)器和傳感器數(shù)據(jù),如感應(yīng)器、量表和其它設(shè)施的數(shù)據(jù)。
大數(shù)據(jù)什么?
對于“大數(shù)據(jù)”(Big data)研究機(jī)構(gòu)Gartner給出了這樣的定義?!按髷?shù)據(jù)”是需要新處理模式才能具有更強(qiáng)的決策力、洞察發(fā)現(xiàn)力和流程優(yōu)化能力來適應(yīng)海量、高增長率和多樣化的信息資產(chǎn)。
麥肯錫全球研究所給出的定義是:一種規(guī)模大到在獲取、存儲、管理、分析方面大大超出了傳統(tǒng)數(shù)據(jù)庫軟件工具能力范圍的數(shù)據(jù)集合,具有海量的數(shù)據(jù)規(guī)模、快速的數(shù)據(jù)流轉(zhuǎn)、多樣的數(shù)據(jù)類型和價值密度低四大特征。
大數(shù)據(jù)技術(shù)的戰(zhàn)略意義不在于掌握龐大的數(shù)據(jù)信息,而在于對這些含有意義的數(shù)據(jù)進(jìn)行專業(yè)化處理。換而言之,如果把大數(shù)據(jù)比作一種產(chǎn)業(yè),那么這種產(chǎn)業(yè)實(shí)現(xiàn)盈利的關(guān)鍵,在于提高對數(shù)據(jù)的“加工能力”,通過“加工”實(shí)現(xiàn)數(shù)據(jù)的“增值”。
從技術(shù)上看,大數(shù)據(jù)與云計(jì)算的關(guān)系就像一枚硬幣的正反面一樣密不可分。大數(shù)據(jù)必然無法用單臺的計(jì)算機(jī)進(jìn)行處理,必須采用分布式架構(gòu)。它的特色在于對海量數(shù)據(jù)進(jìn)行分布式數(shù)據(jù)挖掘。但它必須依托云計(jì)算的分布式處理、分布式數(shù)據(jù)庫和云存儲、虛擬化技術(shù)。
隨著云時代的來臨,大數(shù)據(jù)(Big data)也吸引了越來越多的關(guān)注。分析師團(tuán)隊(duì)認(rèn)為,大數(shù)據(jù)(Big data)通常用來形容一個公司創(chuàng)造的大量非結(jié)構(gòu)化數(shù)據(jù)和半結(jié)構(gòu)化數(shù)據(jù),這些數(shù)據(jù)在下載到關(guān)系型數(shù)據(jù)庫用于分析時會花費(fèi)過多時間和金錢。大數(shù)據(jù)分析常和云計(jì)算聯(lián)系到一起,因?yàn)閷?shí)時的大型數(shù)據(jù)集分析需要像MapReduce一樣的框架來向數(shù)十、數(shù)百或甚至數(shù)千的電腦分配工作。
大數(shù)據(jù)需要特殊的技術(shù),以有效地處理大量的容忍經(jīng)過時間內(nèi)的數(shù)據(jù)。適用于大數(shù)據(jù)的技術(shù),包括大規(guī)模并行處理(MPP)數(shù)據(jù)庫、數(shù)據(jù)挖掘、分布式文件系統(tǒng)、分布式數(shù)據(jù)庫、云計(jì)算平臺、互聯(lián)網(wǎng)和可擴(kuò)展的存儲系統(tǒng)。
以上就是有哪三個大數(shù)據(jù)的來源,小編相信有部分知識點(diǎn)可能是我們?nèi)粘9ぷ鲿姷交蛴玫降摹OM隳芡ㄟ^這篇文章學(xué)到更多知識。更多詳情敬請關(guān)注創(chuàng)新互聯(lián)-成都網(wǎng)站建設(shè)公司行業(yè)資訊頻道。