真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

包含nosqlkudu的詞條

apache kudu 與hadoop是什么關(guān)系

hive默認(rèn)分析的是hdfs上的文件,所以特點(diǎn)的太慢,可以考慮使用基于hdfs的一種分布式nosql數(shù)據(jù)庫(kù),叫hbase,讓hive分析hbase里的數(shù)據(jù),會(huì)快點(diǎn)。

我們提供的服務(wù)有:做網(wǎng)站、成都網(wǎng)站建設(shè)、微信公眾號(hào)開發(fā)、網(wǎng)站優(yōu)化、網(wǎng)站認(rèn)證、修文ssl等。為上千企事業(yè)單位解決了網(wǎng)站和推廣的問(wèn)題。提供周到的售前咨詢和貼心的售后服務(wù),是有科學(xué)管理、有技術(shù)的修文網(wǎng)站制作公司

技術(shù)選型 - OLAP大數(shù)據(jù)技術(shù)哪家強(qiáng)?

Lambda架構(gòu)的核心理念是“流批一體化”,因?yàn)殡S著機(jī)器性能和數(shù)據(jù)框架的不斷完善,用戶其實(shí)不關(guān)心底層是如何運(yùn)行的,批處理也好,流式處理也罷,能按照統(tǒng)一的模型返回結(jié)果就可以了,這就是Lambda架構(gòu)誕生的原因?,F(xiàn)在很多應(yīng)用,例如Spark和Flink,都支持這種結(jié)構(gòu),也就是數(shù)據(jù)進(jìn)入平臺(tái)后,可以選擇批處理運(yùn)行,也可以選擇流式處理運(yùn)行,但不管怎樣,一致性都是相同的。

Kylin

Kylin的主要特點(diǎn)是預(yù)計(jì)算,提前計(jì)算好各個(gè)cube,這樣的優(yōu)點(diǎn)是查詢快速,秒級(jí)延遲;缺點(diǎn)也非常明顯,靈活性不足,無(wú)法做一些 探索 式的,關(guān)聯(lián)性的數(shù)據(jù)分析。

適合的場(chǎng)景也是比較固定的,場(chǎng)景清晰的地方。

ClickHouse

Clickhouse由俄羅斯yandex公司開發(fā)。專為在線數(shù)據(jù)分析而設(shè)計(jì)。

Clickhouse最大的特點(diǎn)首先是快 ,為了快采用了列式儲(chǔ)存,列式儲(chǔ)存更好的支持壓縮,壓縮后的數(shù)據(jù)傳輸量變小,所以更快;同時(shí)支持分片,支持分布式執(zhí)行,支持SQL。

ClickHouse很輕量級(jí),支持?jǐn)?shù)據(jù)壓縮和最終數(shù)據(jù)一致性,其數(shù)據(jù)量級(jí)在PB級(jí)別。

另外Clickhouse不是為關(guān)聯(lián)分析而生,所以多表關(guān)聯(lián)支持的不太好。

同樣Clickhouse不能修改或者刪除數(shù)據(jù),僅能用于批量刪除或修改。沒有完整的事務(wù)支持,不支持二級(jí)索引等等,缺點(diǎn)也非常明顯。

與Kylin相比ClickHouse更加的靈活,sql支持的更好,但是相比Kylin,ClickHouse不支持大并發(fā),也就是不能很多訪問(wèn)同時(shí)在線。

總之ClickHouse用于在線數(shù)據(jù)分析,支持功能簡(jiǎn)單。CPU 利用率高,速度極快。最好的場(chǎng)景用于行為統(tǒng)計(jì)分析。

Hive

Hive這個(gè)工具,大家一定很熟悉,大數(shù)據(jù)倉(cāng)庫(kù)的首選工具??梢詫⒔Y(jié)構(gòu)化的數(shù)據(jù)文件映射為一張數(shù)據(jù)庫(kù)表,并提供完整的sql查詢功能。

主要功能是可以將sql語(yǔ)句轉(zhuǎn)換為相對(duì)應(yīng)的MapReduce任務(wù)進(jìn)行運(yùn)行,這樣可能處理海量的數(shù)據(jù)批量,

Hive與HDFS結(jié)合緊密,在大數(shù)據(jù)開始初期,提供一種直接使用sql就能訪問(wèn)HDFS的方案,擺脫了寫MapReduce任務(wù)的方式,極大的降低了大數(shù)據(jù)的門檻。

當(dāng)然Hive的缺點(diǎn)非常明顯,定義的是分鐘級(jí)別的查詢延遲,估計(jì)都是在比較理想的情況。 但是作為數(shù)據(jù)倉(cāng)庫(kù)的每日批量工具,的確是一個(gè)穩(wěn)定合格的產(chǎn)品。

Presto

Presto極大的改進(jìn)了Hive的查詢速度,而且Presto 本身并不存儲(chǔ)數(shù)據(jù),但是可以接入多種數(shù)據(jù)源,并且支持跨數(shù)據(jù)源的級(jí)聯(lián)查詢,支持包括復(fù)雜查詢、聚合、連接等等。

Presto沒有使用MapReduce,它是通過(guò)一個(gè)定制的查詢和執(zhí)行引擎來(lái)完成的。它的所有的查詢處理是在內(nèi)存中,這也是它的性能很高的一個(gè)主要原因。

Presto由于是基于內(nèi)存的,缺點(diǎn)可能是多張大表關(guān)聯(lián)操作時(shí)易引起內(nèi)存溢出錯(cuò)誤。

另外Presto不支持OLTP的場(chǎng)景,所以不要把Presto當(dāng)做數(shù)據(jù)庫(kù)來(lái)使用。

Presto相比ClickHouse優(yōu)點(diǎn)主要是多表join效果好。相比ClickHouse的支持功能簡(jiǎn)單,場(chǎng)景支持單一,Presto支持復(fù)雜的查詢,應(yīng)用范圍更廣。

Impala

Impala是Cloudera 公司推出,提供對(duì) HDFS、Hbase 數(shù)據(jù)的高性能、低延遲的交互式 SQL 查詢功能。

Impala 使用 Hive的元數(shù)據(jù), 完全在內(nèi)存中計(jì)算。是CDH 平臺(tái)首選的 PB 級(jí)大數(shù)據(jù)實(shí)時(shí)查詢分析引擎。

Impala 的缺點(diǎn)也很明顯,首先嚴(yán)重依賴Hive,而且穩(wěn)定性也稍差,元數(shù)據(jù)需要單獨(dú)的mysql/pgsql來(lái)存儲(chǔ),對(duì)數(shù)據(jù)源的支持比較少,很多nosql是不支持的。但是,估計(jì)是cloudera的國(guó)內(nèi)市場(chǎng)推廣做的不錯(cuò),Impala在國(guó)內(nèi)的市場(chǎng)不錯(cuò)。

SparkSQL

SparkSQL的前身是Shark,它將 SQL 查詢與 Spark 程序無(wú)縫集成,可以將結(jié)構(gòu)化數(shù)據(jù)作為 Spark 的 RDD 進(jìn)行查詢。

SparkSQL后續(xù)不再受限于Hive,只是兼容Hive。

SparkSQL提供了sql訪問(wèn)和API訪問(wèn)的接口。

支持訪問(wèn)各式各樣的數(shù)據(jù)源,包括Hive, Avro, Parquet, ORC, JSON, and JDBC。

Drill

Drill好像國(guó)內(nèi)使用的很少,根據(jù)定義,Drill是一個(gè)低延遲的分布式海量數(shù)據(jù)交互式查詢引擎,支持多種數(shù)據(jù)源,包括hadoop,NoSQL存儲(chǔ)等等。

除了支持多種的數(shù)據(jù)源,Drill跟BI工具集成比較好。

Druid

Druid是專為海量數(shù)據(jù)集上的做高性能 OLAP而設(shè)計(jì)的數(shù)據(jù)存儲(chǔ)和分析系統(tǒng)。

Druid 的架構(gòu)是 Lambda 架構(gòu),分成實(shí)時(shí)層和批處理層。

Druid的核心設(shè)計(jì)結(jié)合了數(shù)據(jù)倉(cāng)庫(kù),時(shí)間序列數(shù)據(jù)庫(kù)和搜索系統(tǒng)的思想,以創(chuàng)建一個(gè)統(tǒng)一的系統(tǒng),用于針對(duì)各種用例的實(shí)時(shí)分析。Druid將這三個(gè)系統(tǒng)中每個(gè)系統(tǒng)的關(guān)鍵特征合并到其接收層,存儲(chǔ)格式,查詢層和核心體系結(jié)構(gòu)中。

目前 Druid 的去重都是非精確的,Druid 適合處理星型模型的數(shù)據(jù),不支持關(guān)聯(lián)操作。也不支持?jǐn)?shù)據(jù)的更新。

Druid最大的優(yōu)點(diǎn)還是支持實(shí)時(shí)與查詢功能,解約了很多開發(fā)工作。

Kudu

kudu是一套完全獨(dú)立的分布式存儲(chǔ)引擎,很多設(shè)計(jì)概念上借鑒了HBase,但是又跟HBase不同,不需要HDFS,通過(guò)raft做數(shù)據(jù)復(fù)制;分片策略支持keyrange和hash等多種。

數(shù)據(jù)格式在parquet基礎(chǔ)上做了些修改,支持二級(jí)索引,更像一個(gè)列式存儲(chǔ),而不是HBase schema-free的kv方式。

kudu也是cloudera主導(dǎo)的項(xiàng)目,跟Impala結(jié)合比較好,通過(guò)impala可以支持update操作。

kudu相對(duì)于原有parquet和ORC格式主要還是做增量更新的。

Hbase

Hbase使用的很廣,更多的是作為一個(gè)KV數(shù)據(jù)庫(kù)來(lái)使用,查詢的速度很快。

Hawq

Hawq是一個(gè)Hadoop原生大規(guī)模并行SQL分析引擎,Hawq采用 MPP 架構(gòu),改進(jìn)了針對(duì) Hadoop 的基于成本的查詢優(yōu)化器。

除了能高效處理本身的內(nèi)部數(shù)據(jù),還可通過(guò) PXF 訪問(wèn) HDFS、Hive、HBase、JSON 等外部數(shù)據(jù)源。HAWQ全面兼容 SQL 標(biāo)準(zhǔn),還可用 SQL 完成簡(jiǎn)單的數(shù)據(jù)挖掘和機(jī)器學(xué)習(xí)。無(wú)論是功能特性,還是性能表現(xiàn),HAWQ 都比較適用于構(gòu)建 Hadoop 分析型數(shù)據(jù)倉(cāng)庫(kù)應(yīng)用。

大數(shù)據(jù)核心技術(shù)有哪些

大數(shù)據(jù)技術(shù)的體系龐大且復(fù)雜,基礎(chǔ)的技術(shù)包含數(shù)據(jù)的采集、數(shù)據(jù)預(yù)處理、分布式存儲(chǔ)、數(shù)據(jù)庫(kù)、數(shù)據(jù)倉(cāng)庫(kù)、機(jī)器學(xué)習(xí)、并行計(jì)算、可視化等。

1、數(shù)據(jù)采集與預(yù)處理:FlumeNG實(shí)時(shí)日志收集系統(tǒng),支持在日志系統(tǒng)中定制各類數(shù)據(jù)發(fā)送方,用于收集數(shù)據(jù);Zookeeper是一個(gè)分布式的,開放源碼的分布式應(yīng)用程序協(xié)調(diào)服務(wù),提供數(shù)據(jù)同步服務(wù)。

2、數(shù)據(jù)存儲(chǔ):Hadoop作為一個(gè)開源的框架,專為離線和大規(guī)模數(shù)據(jù)分析而設(shè)計(jì),HDFS作為其核心的存儲(chǔ)引擎,已被廣泛用于數(shù)據(jù)存儲(chǔ)。HBase,是一個(gè)分布式的、面向列的開源數(shù)據(jù)庫(kù),可以認(rèn)為是hdfs的封裝,本質(zhì)是數(shù)據(jù)存儲(chǔ)、NoSQL數(shù)據(jù)庫(kù)。

3、數(shù)據(jù)清洗:MapReduce作為Hadoop的查詢引擎,用于大規(guī)模數(shù)據(jù)集的并行計(jì)算。

4、數(shù)據(jù)查詢分析:Hive的核心工作就是把SQL語(yǔ)句翻譯成MR程序,可以將結(jié)構(gòu)化的數(shù)據(jù)映射為一張數(shù)據(jù)庫(kù)表,并提供HQL(HiveSQL)查詢功能。Spark啟用了內(nèi)存分布數(shù)據(jù)集,除了能夠提供交互式查詢外,它還可以優(yōu)化迭代工作負(fù)載。

5、數(shù)據(jù)可視化:對(duì)接一些BI平臺(tái),將分析得到的數(shù)據(jù)進(jìn)行可視化,用于指導(dǎo)決策服務(wù)。

kudu是什么意思?

Kudu是一個(gè)列式存儲(chǔ)的用于快速分析的NoSQL數(shù)據(jù)庫(kù),提供了類似SQL的查詢語(yǔ)句,與RDBMS十分類似,有**PRIMARY KEY **,基于主鍵查詢而不是HBase的RowKey。

kudu擁有毫秒級(jí)延遲

與其他大數(shù)據(jù)數(shù)據(jù)庫(kù)不同,Kudu不僅僅是一個(gè)文件格式。行訪問(wèn)達(dá)到毫秒級(jí)延遲,支持C++ JAVA, API PyThon API 擁有簡(jiǎn)單好用的API。

kudu能與Hadoop生態(tài)系統(tǒng)無(wú)縫對(duì)接

你可以使用Java Client實(shí)時(shí)導(dǎo)入數(shù)據(jù),同時(shí)也支持Spark(運(yùn)算) impala(分析工具,比Hive快) MapReduce HDFS HBase 很容易從HDFS中獲取數(shù)據(jù),占用內(nèi)存小于1G。

分布式和容錯(cuò)機(jī)制Kudu通過(guò)把tables切分成tablets,每個(gè)表都可以配置切分的哈希,分區(qū)和組合。Kudu使用了Raft來(lái)復(fù)制給定的操作,保證了數(shù)據(jù)同時(shí)存儲(chǔ)在兩個(gè)節(jié)點(diǎn)上,因此不村子單點(diǎn)故障。

Kudu是為我們下一代設(shè)計(jì)的好軟件,大家可以了解一下!

大數(shù)據(jù)三大核心技術(shù):拿數(shù)據(jù)、算數(shù)據(jù)、賣數(shù)據(jù)!

大數(shù)據(jù)的由來(lái)

對(duì)于“大數(shù)據(jù)”(Big data)研究機(jī)構(gòu)Gartner給出了這樣的定義?!按髷?shù)據(jù)”是需要新處理模式才能具有更強(qiáng)的決策力、洞察發(fā)現(xiàn)力和流程優(yōu)化能力來(lái)適應(yīng)海量、高增長(zhǎng)率和多樣化的信息資產(chǎn)。

1

麥肯錫全球研究所給出的定義是:一種規(guī)模大到在獲取、存儲(chǔ)、管理、分析方面大大超出了傳統(tǒng)數(shù)據(jù)庫(kù)軟件工具能力范圍的數(shù)據(jù)集合,具有海量的數(shù)據(jù)規(guī)模、快速的數(shù)據(jù)流轉(zhuǎn)、多樣的數(shù)據(jù)類型和價(jià)值密度低四大特征。

大數(shù)據(jù)技術(shù)的戰(zhàn)略意義不在于掌握龐大的數(shù)據(jù)信息,而在于對(duì)這些含有意義的數(shù)據(jù)進(jìn)行專業(yè)化處理。換而言之,如果把大數(shù)據(jù)比作一種產(chǎn)業(yè),那么這種產(chǎn)業(yè)實(shí)現(xiàn)盈利的關(guān)鍵,在于提高對(duì)數(shù)據(jù)的“加工能力”,通過(guò)“加工”實(shí)現(xiàn)數(shù)據(jù)的“增值”。

從技術(shù)上看,大數(shù)據(jù)與云計(jì)算的關(guān)系就像一枚硬幣的正反面一樣密不可分。大數(shù)據(jù)必然無(wú)法用單臺(tái)的計(jì)算機(jī)進(jìn)行處理,必須采用分布式架構(gòu)。它的特色在于對(duì)海量數(shù)據(jù)進(jìn)行分布式數(shù)據(jù)挖掘。但它必須依托云計(jì)算的分布式處理、分布式數(shù)據(jù)庫(kù)和云存儲(chǔ)、虛擬化技術(shù)。

大數(shù)據(jù)需要特殊的技術(shù),以有效地處理大量的容忍經(jīng)過(guò)時(shí)間內(nèi)的數(shù)據(jù)。適用于大數(shù)據(jù)的技術(shù),包括大規(guī)模并行處理(MPP)數(shù)據(jù)庫(kù)、數(shù)據(jù)挖掘、分布式文件系統(tǒng)、分布式數(shù)據(jù)庫(kù)、云計(jì)算平臺(tái)、互聯(lián)網(wǎng)和可擴(kuò)展的存儲(chǔ)系統(tǒng)。

最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

大數(shù)據(jù)的應(yīng)用領(lǐng)域

大數(shù)據(jù)無(wú)處不在,大數(shù)據(jù)應(yīng)用于各個(gè)行業(yè),包括金融、 汽車 、餐飲、電信、能源、體能和 娛樂(lè) 等在內(nèi)的 社會(huì) 各行各業(yè)都已經(jīng)融入了大數(shù)據(jù)的印跡。

制造業(yè),利用工業(yè)大數(shù)據(jù)提升制造業(yè)水平,包括產(chǎn)品故障診斷與預(yù)測(cè)、分析工藝流程、改進(jìn)生產(chǎn)工藝,優(yōu)化生產(chǎn)過(guò)程能耗、工業(yè)供應(yīng)鏈分析與優(yōu)化、生產(chǎn)計(jì)劃與排程。

金融行業(yè),大數(shù)據(jù)在高頻交易、社交情緒分析和信貸風(fēng)險(xiǎn)分析三大金融創(chuàng)新領(lǐng)域發(fā)揮重大作用。

汽車 行業(yè),利用大數(shù)據(jù)和物聯(lián)網(wǎng)技術(shù)的無(wú)人駕駛 汽車 ,在不遠(yuǎn)的未來(lái)將走入我們的日常生活。

互聯(lián)網(wǎng)行業(yè),借助于大數(shù)據(jù)技術(shù),可以分析客戶行為,進(jìn)行商品推薦和針對(duì)性廣告投放。

電信行業(yè),利用大數(shù)據(jù)技術(shù)實(shí)現(xiàn)客戶離網(wǎng)分析,及時(shí)掌握客戶離網(wǎng)傾向,出臺(tái)客戶挽留措施。

能源行業(yè),隨著智能電網(wǎng)的發(fā)展,電力公司可以掌握海量的用戶用電信息,利用大數(shù)據(jù)技術(shù)分析用戶用電模式,可以改進(jìn)電網(wǎng)運(yùn)行,合理設(shè)計(jì)電力需求響應(yīng)系統(tǒng),確保電網(wǎng)運(yùn)行安全。

物流行業(yè),利用大數(shù)據(jù)優(yōu)化物流網(wǎng)絡(luò),提高物流效率,降低物流成本。

城市管理,可以利用大數(shù)據(jù)實(shí)現(xiàn)智能交通、環(huán)保監(jiān)測(cè)、城市規(guī)劃和智能安防。

體育 娛樂(lè) ,大數(shù)據(jù)可以幫助我們訓(xùn)練球隊(duì),決定投拍哪種 題財(cái)?shù)?影視作品,以及預(yù)測(cè)比賽結(jié)果。

安全領(lǐng)域,政府可以利用大數(shù)據(jù)技術(shù)構(gòu)建起強(qiáng)大的國(guó)家安全保障體系,企業(yè)可以利用大數(shù)據(jù)抵御網(wǎng)絡(luò)攻擊,警察可以借助大數(shù)據(jù)來(lái)預(yù)防犯罪。

個(gè)人生活, 大數(shù)據(jù)還可以應(yīng)用于個(gè)人生活,利用與每個(gè)人相關(guān)聯(lián)的“個(gè)人大數(shù)據(jù)”,分析個(gè)人生活行為習(xí)慣,為其提供更加周到的個(gè)性化服務(wù)。

大數(shù)據(jù)的價(jià)值,遠(yuǎn)遠(yuǎn)不止于此,大數(shù)據(jù)對(duì)各行各業(yè)的滲透,大大推動(dòng)了 社會(huì) 生產(chǎn)和生活,未來(lái)必將產(chǎn)生重大而深遠(yuǎn)的影響。

大數(shù)據(jù)方面核心技術(shù)有哪些?

大數(shù)據(jù)技術(shù)的體系龐大且復(fù)雜,基礎(chǔ)的技術(shù)包含數(shù)據(jù)的采集、數(shù)據(jù)預(yù)處理、分布式存儲(chǔ)、NoSQL數(shù)據(jù)庫(kù)、數(shù)據(jù)倉(cāng)庫(kù)、機(jī)器學(xué)習(xí)、并行計(jì)算、可視化等各種技術(shù)范疇和不同的技術(shù)層面。首先給出一個(gè)通用化的大數(shù)據(jù)處理框架,主要分為下面幾個(gè)方面:數(shù)據(jù)采集與預(yù)處理、數(shù)據(jù)存儲(chǔ)、數(shù)據(jù)清洗、數(shù)據(jù)查詢分析和數(shù)據(jù)可視化。

數(shù)據(jù)采集與預(yù)處理

對(duì)于各種來(lái)源的數(shù)據(jù),包括移動(dòng)互聯(lián)網(wǎng)數(shù)據(jù)、社交網(wǎng)絡(luò)的數(shù)據(jù)等,這些結(jié)構(gòu)化和非結(jié)構(gòu)化的海量數(shù)據(jù)是零散的,也就是所謂的數(shù)據(jù)孤島,此時(shí)的這些數(shù)據(jù)并沒有什么意義,數(shù)據(jù)采集就是將這些數(shù)據(jù)寫入數(shù)據(jù)倉(cāng)庫(kù)中,把零散的數(shù)據(jù)整合在一起,對(duì)這些數(shù)據(jù)綜合起來(lái)進(jìn)行分析。數(shù)據(jù)采集包括文件日志的采集、數(shù)據(jù)庫(kù)日志的采集、關(guān)系型數(shù)據(jù)庫(kù)的接入和應(yīng)用程序的接入等。在數(shù)據(jù)量比較小的時(shí)候,可以寫個(gè)定時(shí)的腳本將日志寫入存儲(chǔ)系統(tǒng),但隨著數(shù)據(jù)量的增長(zhǎng),這些方法無(wú)法提供數(shù)據(jù)安全保障,并且運(yùn)維困難,需要更強(qiáng)壯的解決方案。

Flume NG

Flume NG作為實(shí)時(shí)日志收集系統(tǒng),支持在日志系統(tǒng)中定制各類數(shù)據(jù)發(fā)送方,用于收集數(shù)據(jù),同時(shí),對(duì)數(shù)據(jù)進(jìn)行簡(jiǎn)單處理,并寫到各種數(shù)據(jù)接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三層架構(gòu):Agent層,Collector層和Store層,每一層均可水平拓展。其中Agent包含Source,Channel和 Sink,source用來(lái)消費(fèi)(收集)數(shù)據(jù)源到channel組件中,channel作為中間臨時(shí)存儲(chǔ),保存所有source的組件信息,sink從channel中讀取數(shù)據(jù),讀取成功之后會(huì)刪除channel中的信息。

NDC

Logstash

Logstash是開源的服務(wù)器端數(shù)據(jù)處理管道,能夠同時(shí)從多個(gè)來(lái)源采集數(shù)據(jù)、轉(zhuǎn)換數(shù)據(jù),然后將數(shù)據(jù)發(fā)送到您最喜歡的 “存儲(chǔ)庫(kù)” 中。一般常用的存儲(chǔ)庫(kù)是Elasticsearch。Logstash 支持各種輸入選擇,可以在同一時(shí)間從眾多常用的數(shù)據(jù)來(lái)源捕捉事件,能夠以連續(xù)的流式傳輸方式,輕松地從您的日志、指標(biāo)、Web 應(yīng)用、數(shù)據(jù)存儲(chǔ)以及各種 AWS 服務(wù)采集數(shù)據(jù)。

Sqoop

Sqoop,用來(lái)將關(guān)系型數(shù)據(jù)庫(kù)和Hadoop中的數(shù)據(jù)進(jìn)行相互轉(zhuǎn)移的工具,可以將一個(gè)關(guān)系型數(shù)據(jù)庫(kù)(例如Mysql、Oracle)中的數(shù)據(jù)導(dǎo)入到Hadoop(例如HDFS、Hive、Hbase)中,也可以將Hadoop(例如HDFS、Hive、Hbase)中的數(shù)據(jù)導(dǎo)入到關(guān)系型數(shù)據(jù)庫(kù)(例如Mysql、Oracle)中。Sqoop 啟用了一個(gè) MapReduce 作業(yè)(極其容錯(cuò)的分布式并行計(jì)算)來(lái)執(zhí)行任務(wù)。Sqoop 的另一大優(yōu)勢(shì)是其傳輸大量結(jié)構(gòu)化或半結(jié)構(gòu)化數(shù)據(jù)的過(guò)程是完全自動(dòng)化的。

流式計(jì)算

流式計(jì)算是行業(yè)研究的一個(gè)熱點(diǎn),流式計(jì)算對(duì)多個(gè)高吞吐量的數(shù)據(jù)源進(jìn)行實(shí)時(shí)的清洗、聚合和分析,可以對(duì)存在于社交網(wǎng)站、新聞等的數(shù)據(jù)信息流進(jìn)行快速的處理并反饋,目前大數(shù)據(jù)流分析工具有很多,比如開源的strom,spark streaming等。

Strom集群結(jié)構(gòu)是有一個(gè)主節(jié)點(diǎn)(nimbus)和多個(gè)工作節(jié)點(diǎn)(supervisor)組成的主從結(jié)構(gòu),主節(jié)點(diǎn)通過(guò)配置靜態(tài)指定或者在運(yùn)行時(shí)動(dòng)態(tài)選舉,nimbus與supervisor都是Storm提供的后臺(tái)守護(hù)進(jìn)程,之間的通信是結(jié)合Zookeeper的狀態(tài)變更通知和監(jiān)控通知來(lái)處理。nimbus進(jìn)程的主要職責(zé)是管理、協(xié)調(diào)和監(jiān)控集群上運(yùn)行的topology(包括topology的發(fā)布、任務(wù)指派、事件處理時(shí)重新指派任務(wù)等)。supervisor進(jìn)程等待nimbus分配任務(wù)后生成并監(jiān)控worker(jvm進(jìn)程)執(zhí)行任務(wù)。supervisor與worker運(yùn)行在不同的jvm上,如果由supervisor啟動(dòng)的某個(gè)worker因?yàn)殄e(cuò)誤異常退出(或被kill掉),supervisor會(huì)嘗試重新生成新的worker進(jìn)程。

Zookeeper

Zookeeper是一個(gè)分布式的,開放源碼的分布式應(yīng)用程序協(xié)調(diào)服務(wù),提供數(shù)據(jù)同步服務(wù)。它的作用主要有配置管理、名字服務(wù)、分布式鎖和集群管理。配置管理指的是在一個(gè)地方修改了配置,那么對(duì)這個(gè)地方的配置感興趣的所有的都可以獲得變更,省去了手動(dòng)拷貝配置的繁瑣,還很好的保證了數(shù)據(jù)的可靠和一致性,同時(shí)它可以通過(guò)名字來(lái)獲取資源或者服務(wù)的地址等信息,可以監(jiān)控集群中機(jī)器的變化,實(shí)現(xiàn)了類似于心跳機(jī)制的功能。

數(shù)據(jù)存儲(chǔ)

Hadoop作為一個(gè)開源的框架,專為離線和大規(guī)模數(shù)據(jù)分析而設(shè)計(jì),HDFS作為其核心的存儲(chǔ)引擎,已被廣泛用于數(shù)據(jù)存儲(chǔ)。

HBase

HBase,是一個(gè)分布式的、面向列的開源數(shù)據(jù)庫(kù),可以認(rèn)為是hdfs的封裝,本質(zhì)是數(shù)據(jù)存儲(chǔ)、NoSQL數(shù)據(jù)庫(kù)。HBase是一種Key/Value系統(tǒng),部署在hdfs上,克服了hdfs在隨機(jī)讀寫這個(gè)方面的缺點(diǎn),與hadoop一樣,Hbase目標(biāo)主要依靠橫向擴(kuò)展,通過(guò)不斷增加廉價(jià)的商用服務(wù)器,來(lái)增加計(jì)算和存儲(chǔ)能力。

Phoenix

Phoenix,相當(dāng)于一個(gè)Java中間件,幫助開發(fā)工程師能夠像使用JDBC訪問(wèn)關(guān)系型數(shù)據(jù)庫(kù)一樣訪問(wèn)NoSQL數(shù)據(jù)庫(kù)HBase。

Yarn

Yarn是一種Hadoop資源管理器,可為上層應(yīng)用提供統(tǒng)一的資源管理和調(diào)度,它的引入為集群在利用率、資源統(tǒng)一管理和數(shù)據(jù)共享等方面帶來(lái)了巨大好處。Yarn由下面的幾大組件構(gòu)成:一個(gè)全局的資源管理器ResourceManager、ResourceManager的每個(gè)節(jié)點(diǎn)代理NodeManager、表示每個(gè)應(yīng)用的Application以及每一個(gè)ApplicationMaster擁有多個(gè)Container在NodeManager上運(yùn)行。

Mesos

Mesos是一款開源的集群管理軟件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等應(yīng)用架構(gòu)。

Redis

Redis是一種速度非常快的非關(guān)系數(shù)據(jù)庫(kù),可以存儲(chǔ)鍵與5種不同類型的值之間的映射,可以將存儲(chǔ)在內(nèi)存的鍵值對(duì)數(shù)據(jù)持久化到硬盤中,使用復(fù)制特性來(lái)擴(kuò)展性能,還可以使用客戶端分片來(lái)擴(kuò)展寫性能。

Atlas

Atlas是一個(gè)位于應(yīng)用程序與MySQL之間的中間件。在后端DB看來(lái),Atlas相當(dāng)于連接它的客戶端,在前端應(yīng)用看來(lái),Atlas相當(dāng)于一個(gè)DB。Atlas作為服務(wù)端與應(yīng)用程序通訊,它實(shí)現(xiàn)了MySQL的客戶端和服務(wù)端協(xié)議,同時(shí)作為客戶端與MySQL通訊。它對(duì)應(yīng)用程序屏蔽了DB的細(xì)節(jié),同時(shí)為了降低MySQL負(fù)擔(dān),它還維護(hù)了連接池。Atlas啟動(dòng)后會(huì)創(chuàng)建多個(gè)線程,其中一個(gè)為主線程,其余為工作線程。主線程負(fù)責(zé)監(jiān)聽所有的客戶端連接請(qǐng)求,工作線程只監(jiān)聽主線程的命令請(qǐng)求。

Kudu

Kudu是圍繞Hadoop生態(tài)圈建立的存儲(chǔ)引擎,Kudu擁有和Hadoop生態(tài)圈共同的設(shè)計(jì)理念,它運(yùn)行在普通的服務(wù)器上、可分布式規(guī)?;渴?、并且滿足工業(yè)界的高可用要求。其設(shè)計(jì)理念為fast analytics on fast data。作為一個(gè)開源的存儲(chǔ)引擎,可以同時(shí)提供低延遲的隨機(jī)讀寫和高效的數(shù)據(jù)分析能力。Kudu不但提供了行級(jí)的插入、更新、刪除API,同時(shí)也提供了接近Parquet性能的批量掃描操作。使用同一份存儲(chǔ),既可以進(jìn)行隨機(jī)讀寫,也可以滿足數(shù)據(jù)分析的要求。Kudu的應(yīng)用場(chǎng)景很廣泛,比如可以進(jìn)行實(shí)時(shí)的數(shù)據(jù)分析,用于數(shù)據(jù)可能會(huì)存在變化的時(shí)序數(shù)據(jù)應(yīng)用等。

在數(shù)據(jù)存儲(chǔ)過(guò)程中,涉及到的數(shù)據(jù)表都是成千上百列,包含各種復(fù)雜的Query,推薦使用列式存儲(chǔ)方法,比如parquent,ORC等對(duì)數(shù)據(jù)進(jìn)行壓縮。Parquet 可以支持靈活的壓縮選項(xiàng),顯著減少磁盤上的存儲(chǔ)。

數(shù)據(jù)清洗

MapReduce作為Hadoop的查詢引擎,用于大規(guī)模數(shù)據(jù)集的并行計(jì)算,”Map(映射)”和”Reduce(歸約)”,是它的主要思想。它極大的方便了編程人員在不會(huì)分布式并行編程的情況下,將自己的程序運(yùn)行在分布式系統(tǒng)中。

隨著業(yè)務(wù)數(shù)據(jù)量的增多,需要進(jìn)行訓(xùn)練和清洗的數(shù)據(jù)會(huì)變得越來(lái)越復(fù)雜,這個(gè)時(shí)候就需要任務(wù)調(diào)度系統(tǒng),比如oozie或者azkaban,對(duì)關(guān)鍵任務(wù)進(jìn)行調(diào)度和監(jiān)控。

Oozie

Oozie是用于Hadoop平臺(tái)的一種工作流調(diào)度引擎,提供了RESTful API接口來(lái)接受用戶的提交請(qǐng)求(提交工作流作業(yè)),當(dāng)提交了workflow后,由工作流引擎負(fù)責(zé)workflow的執(zhí)行以及狀態(tài)的轉(zhuǎn)換。用戶在HDFS上部署好作業(yè)(MR作業(yè)),然后向Oozie提交Workflow,Oozie以異步方式將作業(yè)(MR作業(yè))提交給Hadoop。這也是為什么當(dāng)調(diào)用Oozie 的RESTful接口提交作業(yè)之后能立即返回一個(gè)JobId的原因,用戶程序不必等待作業(yè)執(zhí)行完成(因?yàn)橛行┐笞鳂I(yè)可能會(huì)執(zhí)行很久(幾個(gè)小時(shí)甚至幾天))。Oozie在后臺(tái)以異步方式,再將workflow對(duì)應(yīng)的Action提交給hadoop執(zhí)行。

Azkaban

Azkaban也是一種工作流的控制引擎,可以用來(lái)解決有多個(gè)hadoop或者spark等離線計(jì)算任務(wù)之間的依賴關(guān)系問(wèn)題。azkaban主要是由三部分構(gòu)成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban將大多數(shù)的狀態(tài)信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、認(rèn)證、調(diào)度以及對(duì)工作流執(zhí)行過(guò)程中的監(jiān)控等;Azkaban Executor Server用來(lái)調(diào)度工作流和任務(wù),記錄工作流或者任務(wù)的日志。

流計(jì)算任務(wù)的處理平臺(tái)Sloth,是網(wǎng)易首個(gè)自研流計(jì)算平臺(tái),旨在解決公司內(nèi)各產(chǎn)品日益增長(zhǎng)的流計(jì)算需求。作為一個(gè)計(jì)算服務(wù)平臺(tái),其特點(diǎn)是易用、實(shí)時(shí)、可靠,為用戶節(jié)省技術(shù)方面(開發(fā)、運(yùn)維)的投入,幫助用戶專注于解決產(chǎn)品本身的流計(jì)算需求

數(shù)據(jù)查詢分析

Hive

Hive的核心工作就是把SQL語(yǔ)句翻譯成MR程序,可以將結(jié)構(gòu)化的數(shù)據(jù)映射為一張數(shù)據(jù)庫(kù)表,并提供 HQL(Hive SQL)查詢功能。Hive本身不存儲(chǔ)和計(jì)算數(shù)據(jù),它完全依賴于HDFS和MapReduce??梢詫ive理解為一個(gè)客戶端工具,將SQL操作轉(zhuǎn)換為相應(yīng)的MapReduce jobs,然后在hadoop上面運(yùn)行。Hive支持標(biāo)準(zhǔn)的SQL語(yǔ)法,免去了用戶編寫MapReduce程序的過(guò)程,它的出現(xiàn)可以讓那些精通SQL技能、但是不熟悉MapReduce 、編程能力較弱與不擅長(zhǎng)Java語(yǔ)言的用戶能夠在HDFS大規(guī)模數(shù)據(jù)集上很方便地利用SQL 語(yǔ)言查詢、匯總、分析數(shù)據(jù)。

Hive是為大數(shù)據(jù)批量處理而生的,Hive的出現(xiàn)解決了傳統(tǒng)的關(guān)系型數(shù)據(jù)庫(kù)(MySql、Oracle)在大數(shù)據(jù)處理上的瓶頸 。Hive 將執(zhí)行計(jì)劃分成map-shuffle-reduce-map-shuffle-reduce…的模型。如果一個(gè)Query會(huì)被編譯成多輪MapReduce,則會(huì)有更多的寫中間結(jié)果。由于MapReduce執(zhí)行框架本身的特點(diǎn),過(guò)多的中間過(guò)程會(huì)增加整個(gè)Query的執(zhí)行時(shí)間。在Hive的運(yùn)行過(guò)程中,用戶只需要?jiǎng)?chuàng)建表,導(dǎo)入數(shù)據(jù),編寫SQL分析語(yǔ)句即可。剩下的過(guò)程由Hive框架自動(dòng)的完成。

Impala

Impala是對(duì)Hive的一個(gè)補(bǔ)充,可以實(shí)現(xiàn)高效的SQL查詢。使用Impala來(lái)實(shí)現(xiàn)SQL on Hadoop,用來(lái)進(jìn)行大數(shù)據(jù)實(shí)時(shí)查詢分析。通過(guò)熟悉的傳統(tǒng)關(guān)系型數(shù)據(jù)庫(kù)的SQL風(fēng)格來(lái)操作大數(shù)據(jù),同時(shí)數(shù)據(jù)也是可以存儲(chǔ)到HDFS和HBase中的。Impala沒有再使用緩慢的Hive+MapReduce批處理,而是通過(guò)使用與商用并行關(guān)系數(shù)據(jù)庫(kù)中類似的分布式查詢引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分組成),可以直接從HDFS或HBase中用SELECT、JOIN和統(tǒng)計(jì)函數(shù)查詢數(shù)據(jù),從而大大降低了延遲。Impala將整個(gè)查詢分成一執(zhí)行計(jì)劃樹,而不是一連串的MapReduce任務(wù),相比Hive沒了MapReduce啟動(dòng)時(shí)間。

Hive 適合于長(zhǎng)時(shí)間的批處理查詢分析,而Impala適合于實(shí)時(shí)交互式SQL查詢,Impala給數(shù)據(jù)人員提供了快速實(shí)驗(yàn),驗(yàn)證想法的大數(shù)據(jù)分析工具,可以先使用Hive進(jìn)行數(shù)據(jù)轉(zhuǎn)換處理,之后使用Impala在Hive處理好后的數(shù)據(jù)集上進(jìn)行快速的數(shù)據(jù)分析??偟膩?lái)說(shuō):Impala把執(zhí)行計(jì)劃表現(xiàn)為一棵完整的執(zhí)行計(jì)劃樹,可以更自然地分發(fā)執(zhí)行計(jì)劃到各個(gè)Impalad執(zhí)行查詢,而不用像Hive那樣把它組合成管道型的map-reduce模式,以此保證Impala有更好的并發(fā)性和避免不必要的中間sort與shuffle。但是Impala不支持UDF,能處理的問(wèn)題有一定的限制。

Spark

Spark擁有Hadoop MapReduce所具有的特點(diǎn),它將Job中間輸出結(jié)果保存在內(nèi)存中,從而不需要讀取HDFS。Spark 啟用了內(nèi)存分布數(shù)據(jù)集,除了能夠提供交互式查詢外,它還可以優(yōu)化迭代工作負(fù)載。Spark 是在 Scala 語(yǔ)言中實(shí)現(xiàn)的,它將 Scala 用作其應(yīng)用程序框架。與 Hadoop 不同,Spark 和 Scala 能夠緊密集成,其中的 Scala 可以像操作本地集合對(duì)象一樣輕松地操作分布式數(shù)據(jù)集。

Nutch

Nutch 是一個(gè)開源Java 實(shí)現(xiàn)的搜索引擎。它提供了我們運(yùn)行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬蟲。

Solr

Solr用Java編寫、運(yùn)行在Servlet容器(如Apache Tomcat或Jetty)的一個(gè)獨(dú)立的企業(yè)級(jí)搜索應(yīng)用的全文搜索服務(wù)器。它對(duì)外提供類似于Web-service的API接口,用戶可以通過(guò)http請(qǐng)求,向搜索引擎服務(wù)器提交一定格式的XML文件,生成索引;也可以通過(guò)Http Get操作提出查找請(qǐng)求,并得到XML格式的返回結(jié)果。

Elasticsearch

Elasticsearch是一個(gè)開源的全文搜索引擎,基于Lucene的搜索服務(wù)器,可以快速的儲(chǔ)存、搜索和分析海量的數(shù)據(jù)。設(shè)計(jì)用于云計(jì)算中,能夠達(dá)到實(shí)時(shí)搜索,穩(wěn)定,可靠,快速,安裝使用方便。

還涉及到一些機(jī)器學(xué)習(xí)語(yǔ)言,比如,Mahout主要目標(biāo)是創(chuàng)建一些可伸縮的機(jī)器學(xué)習(xí)算法,供開發(fā)人員在Apache的許可下免費(fèi)使用;深度學(xué)習(xí)框架Caffe以及使用數(shù)據(jù)流圖進(jìn)行數(shù)值計(jì)算的開源軟件庫(kù)TensorFlow等,常用的機(jī)器學(xué)習(xí)算法比如,貝葉斯、邏輯回歸、決策樹、神經(jīng)網(wǎng)絡(luò)、協(xié)同過(guò)濾等。

數(shù)據(jù)可視化

對(duì)接一些BI平臺(tái),將分析得到的數(shù)據(jù)進(jìn)行可視化,用于指導(dǎo)決策服務(wù)。主流的BI平臺(tái)比如,國(guó)外的敏捷BI Tableau、Qlikview、PowrerBI等,國(guó)內(nèi)的SmallBI和新興的網(wǎng)易有數(shù)等。

在上面的每一個(gè)階段,保障數(shù)據(jù)的安全是不可忽視的問(wèn)題。

基于網(wǎng)絡(luò)身份認(rèn)證的協(xié)議Kerberos,用來(lái)在非安全網(wǎng)絡(luò)中,對(duì)個(gè)人通信以安全的手段進(jìn)行身份認(rèn)證,它允許某實(shí)體在非安全網(wǎng)絡(luò)環(huán)境下通信,向另一個(gè)實(shí)體以一種安全的方式證明自己的身份。

控制權(quán)限的ranger是一個(gè)Hadoop集群權(quán)限框架,提供操作、監(jiān)控、管理復(fù)雜的數(shù)據(jù)權(quán)限,它提供一個(gè)集中的管理機(jī)制,管理基于yarn的Hadoop生態(tài)圈的所有數(shù)據(jù)權(quán)限。可以對(duì)Hadoop生態(tài)的組件如Hive,Hbase進(jìn)行細(xì)粒度的數(shù)據(jù)訪問(wèn)控制。通過(guò)操作Ranger控制臺(tái),管理員可以輕松的通過(guò)配置策略來(lái)控制用戶訪問(wèn)HDFS文件夾、HDFS文件、數(shù)據(jù)庫(kù)、表、字段權(quán)限。這些策略可以為不同的用戶和組來(lái)設(shè)置,同時(shí)權(quán)限可與hadoop無(wú)縫對(duì)接。

簡(jiǎn)單說(shuō)有三大核心技術(shù):拿數(shù)據(jù),算數(shù)據(jù),賣數(shù)據(jù)。


文章標(biāo)題:包含nosqlkudu的詞條
新聞來(lái)源:http://weahome.cn/article/phgccc.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部