真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

python非遞歸函數(shù)嗎,遞歸函數(shù)python有什么特點(diǎn)

Python3:怎么通過遞歸函數(shù)

函數(shù)的遞歸調(diào)用

專注于為中小企業(yè)提供成都網(wǎng)站建設(shè)、成都網(wǎng)站制作服務(wù),電腦端+手機(jī)端+微信端的三站合一,更高效的管理,為中小企業(yè)饒河免費(fèi)做網(wǎng)站提供優(yōu)質(zhì)的服務(wù)。我們立足成都,凝聚了一批互聯(lián)網(wǎng)行業(yè)人才,有力地推動(dòng)了近千家企業(yè)的穩(wěn)健成長(zhǎng),幫助中小企業(yè)通過網(wǎng)站建設(shè)實(shí)現(xiàn)規(guī)模擴(kuò)充和轉(zhuǎn)變。

遞歸問題是一個(gè)說簡(jiǎn)單也簡(jiǎn)單,說難也有點(diǎn)難理解的問題.我想非常有必要對(duì)其做一個(gè)總結(jié).

首先理解一下遞歸的定義,遞歸就是直接或間接的調(diào)用自身.而至于什么時(shí)候要用到遞歸,遞歸和非遞歸又有那些區(qū)別?又是一個(gè)不太容易掌握的問題,更難的是對(duì)于遞歸調(diào)用的理解.下面我們就從程序+圖形的角度對(duì)遞歸做一個(gè)全面的闡述.

我們從常見到的遞歸問題開始:

1 階層函數(shù)

#include iostream

using namespace std;

int factorial(int n)

{

if (n == 0)

{

return 1;

}

else

{

int result = factorial(n-1);

return n * result;

}

}

int main()

{

int x = factorial(3);

cout x endl;

return 0;

}

這是一個(gè)遞歸求階層函數(shù)的實(shí)現(xiàn)。很多朋友只是知道該這么實(shí)現(xiàn)的,也清楚它是通過不斷的遞歸調(diào)用求出的結(jié)果.但他們有些不清楚中間發(fā)生了些什么.下面我們用圖對(duì)此做一個(gè)清楚的流程:

根據(jù)上面這個(gè)圖,大家可以很清楚的看出來這個(gè)函數(shù)的執(zhí)行流程。我們的階層函數(shù)factorial被調(diào)用了4次.并且我們可以看出在調(diào)用后面的調(diào)用中,前面的調(diào)用并不退出。他們同時(shí)存在內(nèi)存中??梢娺@是一件很浪費(fèi)資源的事情。我們?cè)摯蔚膮?shù)是3.如果我們傳遞10000呢。那結(jié)果就可想而知了.肯定是溢出了.就用int型來接收結(jié)果別說10000,100就會(huì)產(chǎn)生溢出.即使不溢出我想那肯定也是見很浪費(fèi)資源的事情.我們可以做一個(gè)粗略的估計(jì):每次函數(shù)調(diào)用就單變量所需的內(nèi)存為:兩個(gè)int型變量.n和result.在32位機(jī)器上占8B.那么10000就需要10001次函數(shù)調(diào)用.共需10001*8/1024 = 78KB.這只是變量所需的內(nèi)存空間.其它的函數(shù)調(diào)用時(shí)函數(shù)入口地址等仍也需要占用內(nèi)存空間。可見遞歸調(diào)用產(chǎn)生了一個(gè)不小的開銷.

2 斐波那契數(shù)列

int Fib(int n)

{

if (n = 1)

{

return n;

}

else

{

return Fib(n-1) + Fib(n-2);

}

}

這個(gè)函數(shù)遞歸與上面的那個(gè)有些不同.每次調(diào)用函數(shù)都會(huì)引起另外兩次的調(diào)用.最后將結(jié)果逐級(jí)返回.

我們可以看出這個(gè)遞歸函數(shù)同樣在調(diào)用后買的函數(shù)時(shí),前面的不退出而是在等待后面的結(jié)果,最后求出總結(jié)果。這就是遞歸.

3

#include iostream

using namespace std;

void recursiveFunction1(int num)

{

if (num 5)

{

cout num endl;

recursiveFunction1(num+1);

}

}

void recursiveFunction2(int num)

{

if (num 5)

{

recursiveFunction2(num+1);

cout num endl;

}

}

int main()

{

recursiveFunction1(0);

recursiveFunction2(0);

return 0;

}

運(yùn)行結(jié)果:

1

2

3

4

4

3

2

1

該程序中有兩個(gè)遞歸函數(shù)。傳遞同樣的參數(shù),但他們的輸出結(jié)果剛好相反。理解這兩個(gè)函數(shù)的調(diào)用過程可以很好的幫助我們理解遞歸:

我想能夠把上面三個(gè)函數(shù)的遞歸調(diào)用過程理解了,你已經(jīng)把遞歸調(diào)用理解的差不多了.并且從上面的遞歸調(diào)用中我們可以總結(jié)出遞歸的一個(gè)規(guī)律:他是逐級(jí)的調(diào)用,而在函數(shù)結(jié)束的時(shí)候是從最后面往前反序的結(jié)束.這種方式是很占用資源,也很費(fèi)時(shí)的。但是有的時(shí)候使用遞歸寫出來的程序很容易理解,很易讀.

為什么使用遞歸:

1 有時(shí)候使用遞歸寫出來的程序很容易理解,很易讀.

2 有些問題只有遞歸能夠解決.非遞歸的方法無法實(shí)現(xiàn).如:漢諾塔.

遞歸的條件:

并不是說所有的問題都可以使用遞歸解決,他必須的滿足一定的條件。即有一個(gè)出口點(diǎn).也就是說當(dāng)滿足一定條件時(shí),程序可以結(jié)束,從而完成遞歸調(diào)用,否則就陷入了無限的遞歸調(diào)用之中了.并且這個(gè)條件還要是可達(dá)到的.

遞歸有哪些優(yōu)點(diǎn):

易讀,容易理解,代碼一般比較短.

遞歸有哪些缺點(diǎn):

占用內(nèi)存資源多,費(fèi)時(shí),效率低下.

因此在我們寫程序的時(shí)候不要輕易的使用遞歸,雖然他有他的優(yōu)點(diǎn),但是我們要在易讀性和空間,效率上多做權(quán)衡.一般情況下我們還是使用非遞歸的方法解決問題.若一個(gè)算法非遞歸解法非常難于理解。我們使用遞歸也未嘗不可.如:二叉樹的遍歷算法.非遞歸的算法很難與理解.而相比遞歸算法就容易理解很多.

對(duì)于遞歸調(diào)用的問題,我們?cè)谇耙欢螘r(shí)間寫圖形學(xué)程序時(shí),其中有一個(gè)四連同填充算法就是使用遞歸的方法。結(jié)果當(dāng)要填充的圖形稍微大一些時(shí),程序就自動(dòng)關(guān)閉了.這不是一個(gè)人的問題,所有人寫出來的都是這個(gè)問題.當(dāng)時(shí)我們給與的解釋就是堆棧溢出。就多次遞歸調(diào)用占用太多的內(nèi)存資源致使堆棧溢出,程序沒有內(nèi)存資源執(zhí)行下去,從而被操作系統(tǒng)強(qiáng)制關(guān)閉了.這是一個(gè)真真切切的例子。所以我們?cè)谑褂眠f歸的時(shí)候需要權(quán)衡再三.

python非遞歸建立二叉樹

class Node(object):

def __init__(self, value):

self.left = None

self.right = None

self.value = value

class MyBST(object):

def __init__(self):

self.empty = True

def add(self, value):

if self.empty:

self.root = Node(value)

self.empty = False

cur = self.root

while (True):

if not cur:

cur = Node(value)

break

if value cur.value:

if cur.value != None:

cur = cur.right

else:

newNode = Node(value)

cur.right = newNode

break

elif value cur.value:

if cur.value != None:

cur = cur.left

else:

newNode = Node(value)

cur.left = newNode

break

else:

cur.value = value

break

在while(True)循環(huán)里添加一個(gè)if條件判斷

Python算法-爬樓梯與遞歸函數(shù)

可以看出來的是,該題可以用斐波那契數(shù)列解決。

樓梯一共有n層,每次只能走1層或者2層,而要走到最終的n層。不是從n-1或者就是n-2來的。

F(1) = 1

F(2) = 2

F(n) = F(n-1) + F(n-2) (n=3)

這是遞歸寫法,但是會(huì)導(dǎo)致棧溢出。在計(jì)算機(jī)中,函數(shù)的調(diào)用是通過棧進(jìn)行實(shí)現(xiàn)的,如果遞歸調(diào)用的次數(shù)過多,就會(huì)導(dǎo)致棧溢出。

針對(duì)這種情況就要使用方法二,改成非遞歸函數(shù)。

將遞歸進(jìn)行改寫,實(shí)現(xiàn)循環(huán)就不會(huì)導(dǎo)致棧溢出


名稱欄目:python非遞歸函數(shù)嗎,遞歸函數(shù)python有什么特點(diǎn)
當(dāng)前路徑:http://weahome.cn/article/phhsis.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部