真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯網站制作重慶分公司

用python求函數切線,一個函數的切線方程怎么求

如何用python求導數

打開python運行環(huán)境。

成都創(chuàng)新互聯自2013年起,是專業(yè)互聯網技術服務公司,擁有項目成都網站建設、網站建設網站策劃,項目實施與項目整合能力。我們以讓每一個夢想脫穎而出為使命,1280元吉林做網站,已為上家服務,為吉林各地企業(yè)和個人服務,聯系電話:18982081108

導入微分的模塊包:from sympy import *。

定義符號變量:x = symbols('x')

定義一個函數:f = x**9

diff = diff(f,x)求導

最后輸入diff,即可顯示其變量值了。

眾多python培訓視頻,盡在python學習網,歡迎在線學習!

如何用python編寫一個求分段函數的值的程序

1、首先打開python的編輯器軟件,編輯器的選擇可以根據自己的喜好,之后準備好一個空白的python文件:

2、接著在空白的python文件上編寫python程序,這里假設當x>1的時候,方程為根號下x加4,當x-1時,方程為5乘以x的平方加3。所以在程序的開始需要引入math庫,方便計算平方和開方,之后在函數體重寫好表達式就可以了,最后調用一下函數,將結果打印出來:

3、最后點擊軟件內的綠色箭頭,運行程序,在下方可以看到最終計算的結果,以上就是python求分段函數的過程:

python作業(yè)求幫助

#!/usr/bin/env?python

#?-*-?coding:?utf-8?-*-

#?File?name:?parabolic

#???Project?name:?parabolic_equation

"""

..?moduleauthor::

..?Module..?name?parabolic?of?procjet?parabolic_equation

"""

from?sympy?import?*

import?matplotlib.pyplot?as?plt

import?numpy?as?np

def?_filterComplex(inputvalue,?description='inputvalue'):

try:

str(inputvalue).index('I')

except?ValueError:

return?False

else:

return?True

def?_checkBool(inputvalue,?description='inputvalue'):

"""

:param?inputvalue:

:param?description:

:return:

"""

if?not?isinstance(inputvalue,?bool):

raise?TypeError(

'The?{0}?must?be?boolean.?Given:?{1!r}'.format(description,?inputvalue))

def?_checkNumerical(inputvalue,?description='inputvalue'):

"""

:param?inputvalue:

:param?description:

:return:

"""

try:

inputvalue?+?1

except?TypeError:

raise?TypeError(

'The?{0}?must?be?numerical.?Given:?{1!r}'.format(description,?inputvalue))

def?_drawTowPara(expr_1,?expr_2,??inputmin,?inputmax?,step=0.1):

"""

:param?expr_1:

:param?expr_2:

:param?inputmin:

:param?inputmax:

:param?step:

:param?expr_1_evalwithY:

:param?expr_2_evalwithY:

:return:

"""

_checkNumerical(inputmin,?'xmin')

_checkNumerical(inputmax,?'xmax')

_checkNumerical(step,?'step')

y1List?=?[]

x1List?=?[]

y2List?=?[]

x2List?=?[]

if?expr_1.vertical?is?True:

x1List?=?np.arange(inputmin,?inputmax,?step)

for?x?in?x1List:

y1List.append(expr_1.evaluates_Y(x))

else:

y1List?=?np.arange(inputmin,?inputmax,?step)

for?y?in?y1List:

x1List.append(expr_1.evaluates_X(y))

if?expr_2.vertical?is?True:

x2List?=?np.arange(inputmin,?inputmax,?step)

for?x?in?x2List:

y2List.append(expr_2.evaluates_Y(x))

else:

y2List?=?np.arange(inputmin,?inputmax,?step)

for?y?in?y2List:

x2List.append(expr_2.evaluates_X(y))

plt.plot(x1List,?y1List,?'+')

plt.plot(x2List,?y2List,?'-')

plt.show()

def?_solveCrossing(expr_1,?expr_2):

"""

:param?expr_1:

:param?expr_2:

:return:

"""

x?=?Symbol('x')

y?=?Symbol('y')

print?"Given?the?first?expression:?{0!r}".format(expr_1.expr)

print?"Given?the?first?expression:?{0!r}".format(expr_2.expr)

ResultList?=?solve([expr_1.expr,?expr_2.expr],?[x,?y])

Complex?=?False

ResultListTrue?=?[]

for?i?in?range(0,?(len(ResultList)),1):?

if?_filterComplex(ResultList[i][0],?'x')?or?_filterComplex(ResultList[i][1],?'y'):

Complex?=?True

else:

ResultListTrue.append(ResultList[i])

if?len(ResultListTrue)?==?0?and?Complex:

print?"Two?hyperbolic?do?not?intersect,?and?there?is?imaginary?value."

elif?len(ResultListTrue)?==?1:

print?"Two?hyperbolic?tangent.:"?

print?ResultListTrue

else:

print?"Two?hyperbolic?intersection,?and?Points?are:"?

for?iterm?in?ResultListTrue:

print?iterm

class?Parabolic():

"""

"""

def?__init__(self,?a,?b,?c,?vertical=True):

"""

:return:

"""

_checkNumerical(a,?'a')

_checkNumerical(b,?'b')

_checkNumerical(c,?'c')

_checkBool(vertical,?'vertical')

self.a?=?a

self.b?=?b

self.c?=?c

self.vertical?=?vertical

self.y?=?Symbol('y')

self.x?=?Symbol('x')

self.xarray?=?[]

self.yarray?=?[]

if?vertical?is?True:

self.expr?=?(self.x**2)*self.a?+?self.x*self.b?+?self.c

else:

self.expr?=?(self.y**2)*self.a?+?self.y*self.b?+?self.c

def?__repr__(self):

"""

:return:

"""

if?self.vertical?is?True:

return?"The?Equation?look?like:?{0!r}".format(self.expr)

else:

return?"The?Equation?look?like:?{0!r}".format(self.expr)

def?evaluates_X(self,?inputvalue):

"""

:param?inputvalue:

:return:

"""

_checkNumerical(inputvalue,?'y')

return?self.expr.subs(self.y,?inputvalue)

def?evaluates_Y(self,?inputvalue):

"""

:param?inputvalue:

:return:

"""

_checkNumerical(inputvalue,?'x')

return?self.expr.subs(self.x,?inputvalue)

def?getArrays(self,?inputmin,?inputmax,?step=1):

"""

:param?inputmin:

:param?inputmax:

:param?step:

:return:

"""

_checkNumerical(inputmin,?'xmin')

_checkNumerical(inputmax,?'xmax')

_checkNumerical(step,?'step')

if?self.vertical?is?True:

for?x?in?range(inputmin,?inputmax,?step):

self.xarray.append(x)

self.yarray.append(self.evaluates_Y(x))

else:

for?y?in?range(inputmin,?inputmax,?step):

self.yarray.append(y)

self.xarray.append(self.evaluates_X(y))

def?drawPara(self,?inputmin,?inputmax,?step=1):

"""

:param?inputmin:

:param?inputmax:

:param?step:

:return:

"""

_checkNumerical(inputmin,?'xmin')

_checkNumerical(inputmax,?'xmax')

_checkNumerical(step,?'step')

yList?=?[]

xList?=?[]

if?self.vertical?is?True:

xList?=?np.arange(inputmin,?inputmax,?step)

for?x?in?xList:

yList.append(self.evaluates_Y(x))

else:

yList?=?np.arange(inputmin,?inputmax,?step)

for?y?in?yList:

xList.append(self.evaluates_X(y))

plt.plot(xList,?yList,?'+')

plt.show()

if?__name__?==?'__main__':

pa1?=?Parabolic(-5,3,6)

pa2?=?Parabolic(-5,2,5,?False)

print?pa1

print?pa2

_solveCrossing(pa1,?pa2)

_drawTowPara(pa1,?pa2,?-10,?10,?0.1)

# 這就是你想要的,代碼解決了你的大部分問題,可以求兩條雙曲線交點,或者直線與雙曲線交#點,或者兩直線交點. 不過定義雙曲線時候使用的是一般式.也也盡可能做了測試,如果有#問題的話,追問吧

函數的切線怎么求?

f(x)過(x0,y0)的切線

當(x0,y0)在f(x)上時,由切線的斜率是f'(x0),所以方程是(y-y0)/(x-x0)=f'(x0)

當(x0,y0)不在f(x)上時,設切點是(x1,y1),

方程為(y-y0)/(x-x0)=f'(x1)

y1=f(x1)

(y1-y0)/(x1-x0)=f'(x1)由這兩個方程可解出(x1,y1)就可求出方程

Matlab或Python怎么作出兩個圓的公切線

用sympy + matplot:

from sympy import Point, Circle, Line, var

import matplotlib.pyplot as plt

var('t')

c1 = Circle(Point(0, 0), 2)

c2 = Circle(Point(4, 4), 3)

l1 = Line(c1.center, c2.center)

p1 = l1.arbitrary_point(t).subs({t: -c1.radius / (c2.radius - c1.radius)})

p2 = l1.arbitrary_point(t).subs({t: c1.radius / (c1.radius + c2.radius)})

t1 = c1.tangent_lines(p1)

t2 = c1.tangent_lines(p2)

ta = t1 + t2

fig = plt.gcf()

ax = fig.gca()

ax.set_xlim((-10, 10))

ax.set_ylim((-10, 10))

ax.set_aspect(1)

cp1 = plt.Circle((c1.center.x, c1.center.y), c1.radius, fill = False)

cp2 = plt.Circle((c2.center.x, c2.center.y), c2.radius, fill = False)

tp = [0 for i in range(4)]

for i in range(4):

start = ta[i].arbitrary_point(t).subs({t:-10})

end = ta[i].arbitrary_point(t).subs({t:10})

tp[i] = plt.Line2D([start.x, end.x], [start.y, end.y], lw = 2)

ax.add_artist(cp1)

ax.add_artist(cp2)

for i in range(4):

ax.add_artist(tp[i])


當前名稱:用python求函數切線,一個函數的切線方程怎么求
當前地址:http://weahome.cn/article/phpjge.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部