因為索引多。同一條個數(shù)據(jù),NOSQL占用空間是一般SQL數(shù)據(jù)庫的3-5倍。
公司主營業(yè)務:網(wǎng)站設計制作、網(wǎng)站建設、移動網(wǎng)站開發(fā)等業(yè)務。幫助企業(yè)客戶真正實現(xiàn)互聯(lián)網(wǎng)宣傳,提高企業(yè)的競爭能力。創(chuàng)新互聯(lián)公司是一支青春激揚、勤奮敬業(yè)、活力青春激揚、勤奮敬業(yè)、活力澎湃、和諧高效的團隊。公司秉承以“開放、自由、嚴謹、自律”為核心的企業(yè)文化,感謝他們對我們的高要求,感謝他們從不同領域給我們帶來的挑戰(zhàn),讓我們激情的團隊有機會用頭腦與智慧不斷的給客戶帶來驚喜。創(chuàng)新互聯(lián)公司推出八宿免費做網(wǎng)站回饋大家。
你可以理解成NOSQL默認開啟全字段索引和全文索引什么的。
其實在十萬級以下的數(shù)據(jù),只要SQL建好索引的情況并不比NOSQL慢。NOSQL主要是用于千萬上億級的時候。
而傳統(tǒng)的關系數(shù)據(jù)庫在應付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,例如:
1、High performance - 對數(shù)據(jù)庫高并發(fā)讀寫的需求
web2.0網(wǎng)站要根據(jù)用戶個性化信息來實時生成動態(tài)頁面和提供動態(tài)信息,所以基本上無法使用動態(tài)頁面靜態(tài)化技術(shù),因此數(shù)據(jù)庫并發(fā)負載非常高,往往要達到每秒上萬次讀寫請求。關系數(shù)據(jù)庫應付上萬次SQL查詢還勉強頂?shù)米。菓渡先f次SQL寫數(shù)據(jù)請求,硬盤IO就已經(jīng)無法承受了。其實對于普通的BBS網(wǎng)站,往往也存在對高并發(fā)寫請求的需求。
2、Huge Storage - 對海量數(shù)據(jù)的高效率存儲和訪問的需求
對于大型的SNS網(wǎng)站,每天用戶產(chǎn)生海量的用戶動態(tài),以國外的Friendfeed為例,一個月就達到了2.5億條用戶動態(tài),對于關系數(shù)據(jù)庫來說,在一張2.5億條記錄的表里面進行SQL查詢,效率是極其低下乃至不可忍受的。再例如大型web網(wǎng)站的用戶登錄系統(tǒng),例如騰訊,盛大,動輒數(shù)以億計的帳號,關系數(shù)據(jù)庫也很難應付。
3、High Scalability High Availability- 對數(shù)據(jù)庫的高可擴展性和高可用性的需求
在基于web的架構(gòu)當中,數(shù)據(jù)庫是最難進行橫向擴展的,當一個應用系統(tǒng)的用戶量和訪問量與日俱增的時候,你的數(shù)據(jù)庫卻沒有辦法像web server和app server那樣簡單的通過添加更多的硬件和服務節(jié)點來擴展性能和負載能力。對于很多需要提供24小時不間斷服務的網(wǎng)站來說,對數(shù)據(jù)庫系統(tǒng)進行升級和擴展是非常痛苦的事情,往往需要停機維護和數(shù)據(jù)遷移,為什么數(shù)據(jù)庫不能通過不斷的添加服務器節(jié)點來實現(xiàn)擴展呢?
在上面提到的“三高”需求面前,關系數(shù)據(jù)庫遇到了難以克服的障礙,而對于web2.0網(wǎng)站來說,關系數(shù)據(jù)庫的很多主要特性卻往往無用武之地,例如:
1、數(shù)據(jù)庫事務一致性需求
很多web實時系統(tǒng)并不要求嚴格的數(shù)據(jù)庫事務,對讀一致性的要求很低,有些場合對寫一致性要求也不高。因此數(shù)據(jù)庫事務管理成了數(shù)據(jù)庫高負載下一個沉重的負擔。
2、數(shù)據(jù)庫的寫實時性和讀實時性需求
對關系數(shù)據(jù)庫來說,插入一條數(shù)據(jù)之后立刻查詢,是肯定可以讀出來這條數(shù)據(jù)的,但是對于很多web應用來說,并不要求這么高的實時性。
3、對復雜的SQL查詢,特別是多表關聯(lián)查詢的需求
任何大數(shù)據(jù)量的web系統(tǒng),都非常忌諱多個大表的關聯(lián)查詢,以及復雜的數(shù)據(jù)分析類型的復雜SQL報表查詢,特別是SNS類型的網(wǎng)站,從需求以及產(chǎn)品設計角度,就避免了這種情況的產(chǎn)生。往往更多的只是單表的主鍵查詢,以及單表的簡單條件分頁查詢,SQL的功能被極大的弱化了。
因此,關系數(shù)據(jù)庫在這些越來越多的應用場景下顯得不那么合適了,為了解決這類問題的非關系數(shù)據(jù)庫應運而生。
NoSQL 是非關系型數(shù)據(jù)存儲的廣義定義。它打破了長久以來關系型數(shù)據(jù)庫與ACID理論大一統(tǒng)的局面。NoSQL 數(shù)據(jù)存儲不需要固定的表結(jié)構(gòu),通常也不存在連接操作。在大數(shù)據(jù)存取上具備關系型數(shù)據(jù)庫無法比擬的性能優(yōu)勢。該術(shù)語在 2009 年初得到了廣泛認同。
當今的應用體系結(jié)構(gòu)需要數(shù)據(jù)存儲在橫向伸縮性上能夠滿足需求。而 NoSQL 存儲就是為了實現(xiàn)這個需求。Google 的BigTable與Amazon的Dynamo是非常成功的商業(yè) NoSQL 實現(xiàn)。一些開源的 NoSQL 體系,如Facebook 的Cassandra, Apache 的HBase,也得到了廣泛認同。
因為速度快。你上億級數(shù)據(jù)的情況下NOSQL是比普通SQL效率更高,哪怕有索引。畢竟NOSQL的存儲空間使用是普通SQL三倍多?;径加迷谒饕矫媪恕?/p>
如果是全文搜索關鍵字,左右模糊等就更甩SQL幾條街了
nosql速度快,但是完成不了關系數(shù)據(jù)庫的復雜邏輯
sql功能強大,但是效率上有瓶頸
看項目大小取舍
我們使用Elasticsearch存儲的文檔數(shù)量接近50億(算上1份復制,接近100億文檔),總共10個數(shù)據(jù)節(jié)點和2個元數(shù)據(jù)節(jié)點(48GB內(nèi)存,8核心CPU,ES使用內(nèi)存達到70%),每天的文檔增量大概是3000W條(速度持續(xù)增加中)。目前來看,單個文檔的查詢效率基本處于實時狀態(tài);對于1到2周的數(shù)據(jù)的聚合統(tǒng)計操作也可以在10秒之內(nèi)返回結(jié)果。
但是,還有提升的空間:
1. 對于查詢單條數(shù)據(jù)的應用場景來說,我們可以使用ES的路由機制,將同一索引內(nèi)的具有相同特征(比如具有相同的userid)的文檔全部存儲于一個節(jié)點上,這樣我們之后的查詢都可以直接定位到這個節(jié)點上,而不用將查詢廣播道所有的節(jié)點上;
2. 隨著數(shù)據(jù)節(jié)點的增加,適當增加分片數(shù)量,提升系統(tǒng)的分布水平,也可以通過分而治之的方式優(yōu)化查詢性能;
個人以為Elasticsearch作為內(nèi)部存儲來說還是不錯的,效率也基本能夠滿足,在某些方面替代傳統(tǒng)DB也是可以的,前提是你的業(yè)務不對操作的事性務有特殊要求;而權(quán)限管理也不用那么細,因為ES的權(quán)限這塊還不完善。由于我們對ES的應用場景僅僅是在于對某段時間內(nèi)的數(shù)據(jù)聚合操作,沒有大量的單文檔請求(比如通過userid來找到一個用戶的文檔,類似于NoSQL的應用場景),所以能否替代NoSQL還需要各位自己的測試。如果讓我選擇的話,我會嘗試使用ES來替代傳統(tǒng)的NoSQL,因為它的橫向擴展機制太方便了。
個人不認為nosql在少量數(shù)據(jù)存儲上有啥優(yōu)勢。nosql主要解決的是auto sharding的問題,你不需要sharding,搞啥nosql. 作者:方圓 鏈接: