真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

不常見的nosql,不常見的蔬菜

常見的nosql數(shù)據(jù)庫都是key

什么是NoSQL

成都創(chuàng)新互聯(lián)公司專注于企業(yè)成都營銷網(wǎng)站建設、網(wǎng)站重做改版、績溪網(wǎng)站定制設計、自適應品牌網(wǎng)站建設、H5開發(fā)、電子商務商城網(wǎng)站建設、集團公司官網(wǎng)建設、外貿(mào)網(wǎng)站制作、高端網(wǎng)站制作、響應式網(wǎng)頁設計等建站業(yè)務,價格優(yōu)惠性價比高,為績溪等各大城市提供網(wǎng)站開發(fā)制作服務。

大家有沒有聽說過“NoSQL”呢?近年,這個詞極受關注??吹健癗oSQL”這個詞,大家可能會誤以為是“No!SQL”的縮寫,并深感憤怒:“SQL怎么會沒有必要了呢?”但實際上,它是“Not Only SQL”的縮寫。它的意義是:適用關系型數(shù)據(jù)庫的時候就使用關系型數(shù)據(jù)庫,不適用的時候也沒有必要非使用關系型數(shù)據(jù)庫不可,可以考慮使用更加合適的數(shù)據(jù)存儲。

為彌補關系型數(shù)據(jù)庫的不足,各種各樣的NoSQL數(shù)據(jù)庫應運而生。

為了更好地了解本書所介紹的NoSQL數(shù)據(jù)庫,對關系型數(shù)據(jù)庫的理解是必不可少的。那么,就讓我們先來看一看關系型數(shù)據(jù)庫的歷史、分類和特征吧。

關系型數(shù)據(jù)庫簡史

1969年,埃德加?6?1弗蘭克?6?1科德(Edgar Frank Codd)發(fā)表了劃時代的論文,首次提出了關系數(shù)據(jù)模型的概念。但可惜的是,刊登論文的《IBM Research Report》只是IBM公司的內(nèi)部刊物,因此論文反響平平。1970年,他再次在刊物《Communication of the ACM》上發(fā)表了題為“A Relational Model of Data for Large Shared Data banks”(大型共享數(shù)據(jù)庫的關系模型)的論文,終于引起了大家的關注。

科德所提出的關系數(shù)據(jù)模型的概念成為了現(xiàn)今關系型數(shù)據(jù)庫的基礎。當時的關系型數(shù)據(jù)庫由于硬件性能低劣、處理速度過慢而遲遲沒有得到實際應用。但之后隨著硬件性能的提升,加之使用簡單、性能優(yōu)越等優(yōu)點,關系型數(shù)據(jù)庫得到了廣泛的應用。

通用性及高性能

雖然本書是講解NoSQL數(shù)據(jù)庫的,但有一個重要的大前提,請大家一定不要誤解。這個大前提就是“關系型數(shù)據(jù)庫的性能絕對不低,它具有非常好的通用性和非常高的性能”。毫無疑問,對于絕大多數(shù)的應用來說它都是最有效的解決方案。

突出的優(yōu)勢

關系型數(shù)據(jù)庫作為應用廣泛的通用型數(shù)據(jù)庫,它的突出優(yōu)勢主要有以下幾點:

保持數(shù)據(jù)的一致性(事務處理)

由于以標準化為前提,數(shù)據(jù)更新的開銷很小(相同的字段基本上都只有一處)

可以進行JOIN等復雜查詢

存在很多實際成果和專業(yè)技術信息(成熟的技術)

這其中,能夠保持數(shù)據(jù)的一致性是關系型數(shù)據(jù)庫的最大優(yōu)勢。在需要嚴格保證數(shù)據(jù)一致性和處理完整性的情況下,用關系型數(shù)據(jù)庫是肯定沒有錯的。但是有些情況不需要JOIN,對上述關系型數(shù)據(jù)庫的優(yōu)點也沒有什么特別需要,這時似乎也就沒有必要拘泥于關系型數(shù)據(jù)庫了。

關系型數(shù)據(jù)庫的不足

不擅長的處理

就像之前提到的那樣,關系型數(shù)據(jù)庫的性能非常高。但是它畢竟是一個通用型的數(shù)據(jù)庫,并不能完全適應所有的用途。具體來說它并不擅長以下處理:

大量數(shù)據(jù)的寫入處理

為有數(shù)據(jù)更新的表做索引或表結(jié)構(schema)變更

字段不固定時應用

對簡單查詢需要快速返回結(jié)果的處理

。。。。。。

NoSQL數(shù)據(jù)庫

為了彌補關系型數(shù)據(jù)庫的不足(特別是最近幾年),NoSQL數(shù)據(jù)庫出現(xiàn)了。關系型數(shù)據(jù)庫應用廣泛,能進行事務處理和JOIN等復雜處理。相對地,NoSQL數(shù)據(jù)庫只應用在特定領域,基本上不進行復雜的處理,但它恰恰彌補了之前所列舉的關系型數(shù)據(jù)庫的不足之處。

易于數(shù)據(jù)的分散

如前所述,關系型數(shù)據(jù)庫并不擅長大量數(shù)據(jù)的寫入處理。原本關系型數(shù)據(jù)庫就是以JOIN為前提的,就是說,各個數(shù)據(jù)之間存在關聯(lián)是關系型數(shù)據(jù)庫得名的主要原因。為了進行JOIN處理,關系型數(shù)據(jù)庫不得不把數(shù)據(jù)存儲在同一個服務器內(nèi),這不利于數(shù)據(jù)的分散。相反,NoSQL數(shù)據(jù)庫原本就不支持JOIN處理,各個數(shù)據(jù)都是獨立設計的,很容易把數(shù)據(jù)分散到多個服務器上。由于數(shù)據(jù)被分散到了多個服務器上,減少了每個服務器上的數(shù)據(jù)量,即使要進行大量數(shù)據(jù)的寫入操作,處理起來也更加容易。同理,數(shù)據(jù)的讀入操作當然也同樣容易。

提升性能和增大規(guī)模

下面說一點題外話,如果想要使服務器能夠輕松地處理更大量的數(shù)據(jù),那么只有兩個選擇:一是提升性能,二是增大規(guī)模。下面我們來整理一下這兩者的不同。

首先,提升性能指的就是通過提升現(xiàn)行服務器自身的性能來提高處理能力。這是非常簡單的方法,程序方面也不需要進行變更,但需要一些費用。若要購買性能翻倍的服務器,需要花費的資金往往不只是原來的2倍,可能需要多達5到10倍。這種方法雖然簡單,但是成本較高。

另一方面,增大規(guī)模指的是使用多臺廉價的服務器來提高處理能力。它需要對程序進行變更,但由于使用廉價的服務器,可以控制成本。另外,以后只要依葫蘆畫瓢增加廉價服務器的數(shù)量就可以了。

不對大量數(shù)據(jù)進行處理的話就沒有使用的必要嗎?

NoSQL數(shù)據(jù)庫基本上來說為了“使大量數(shù)據(jù)的寫入處理更加容易(讓增加服務器數(shù)量更容易)”而設計的。但如果不是對大量數(shù)據(jù)進行操作的話,NoSQL數(shù)據(jù)庫的應用就沒有意義嗎?

答案是否定的。的確,它在處理大量數(shù)據(jù)方面很有優(yōu)勢。但實際上NoSQL數(shù)據(jù)庫還有各種各樣的特點,如果能夠恰當?shù)乩眠@些特點將會是非常有幫助。具體的例子將會在第2章和第3章進行介紹,這些用途將會讓你感受到利用NoSQL的好處。

希望順暢地對數(shù)據(jù)進行緩存(Cache)處理

希望對數(shù)組類型的數(shù)據(jù)進行高速處理

希望進行全部保存

多樣的NoSQL數(shù)據(jù)庫

NoSQL數(shù)據(jù)庫存在著“key-value存儲”、“文檔型數(shù)據(jù)庫”、“列存儲數(shù)據(jù)庫”等各種各樣的種類,每種數(shù)據(jù)庫又包含各自的特點。下一節(jié)讓我們一起來了解一下NoSQL數(shù)據(jù)庫的種類和特點。

NoSQL數(shù)據(jù)庫是什么

NoSQL說起來簡單,但實際上到底有多少種呢?我在提筆的時候,到NoSQL的官方網(wǎng)站上確認了一下,竟然已經(jīng)有122種了。另外官方網(wǎng)站上也介紹了本書沒有涉及到的圖形數(shù)據(jù)庫和對象數(shù)據(jù)庫等各個類別。不知不覺間,原來已經(jīng)出現(xiàn)了這么多的NoSQL數(shù)據(jù)庫啊。

本節(jié)將為大家介紹具有代表性的NoSQL數(shù)據(jù)庫。

key-value存儲

這是最常見的NoSQL數(shù)據(jù)庫,它的數(shù)據(jù)是以key-value的形式存儲的。雖然它的處理速度非??欤腔旧现荒芡ㄟ^key的完全一致查詢獲取數(shù)據(jù)。根據(jù)數(shù)據(jù)的保存方式可以分為臨時性、永久性和兩者兼具三種。

臨時性

memcached屬于這種類型。所謂臨時性就是 “數(shù)據(jù)有可能丟失”的意思。memcached把所有數(shù)據(jù)都保存在內(nèi)存中,這樣保存和讀取的速度非常快,但是當memcached停止的時候,數(shù)據(jù)就不存在了。由于數(shù)據(jù)保存在內(nèi)存中,所以無法操作超出內(nèi)存容量的數(shù)據(jù)(舊數(shù)據(jù)會丟失)。

在內(nèi)存中保存數(shù)據(jù)

可以進行非??焖俚谋4婧妥x取處理

數(shù)據(jù)有可能丟失

永久性

Tokyo Tyrant、Flare、ROMA等屬于這種類型。和臨時性相反,所謂永久性就是“數(shù)據(jù)不會丟失”的意思。這里的key-value存儲不像memcached那樣在內(nèi)存中保存數(shù)據(jù),而是把數(shù)據(jù)保存在硬盤上。與memcached在內(nèi)存中處理數(shù)據(jù)比起來,由于必然要發(fā)生對硬盤的IO操作,所以性能上還是有差距的。但數(shù)據(jù)不會丟失是它最大的優(yōu)勢。

在硬盤上保存數(shù)據(jù)

可以進行非??焖俚谋4婧妥x取處理(但無法與memcached相比)

數(shù)據(jù)不會丟失

兩者兼具

Redis屬于這種類型。Redis有些特殊,臨時性和永久性兼具,且集合了臨時性key-value存儲和永久性key-value存儲的優(yōu)點。Redis首先把數(shù)據(jù)保存到內(nèi)存中,在滿足特定條件(默認是15分鐘一次以上,5分鐘內(nèi)10個以上,1分鐘內(nèi)10000個以上的key發(fā)生變更)的時候?qū)?shù)據(jù)寫入到硬盤中。這樣既確保了內(nèi)存中數(shù)據(jù)的處理速度,又可以通過寫入硬盤來保證數(shù)據(jù)的永久性。這種類型的數(shù)據(jù)庫特別適合于處理數(shù)組類型的數(shù)據(jù)。

同時在內(nèi)存和硬盤上保存數(shù)據(jù)

可以進行非??焖俚谋4婧妥x取處理

保存在硬盤上的數(shù)據(jù)不會消失(可以恢復)

適合于處理數(shù)組類型的數(shù)據(jù)

面向文檔的數(shù)據(jù)庫

MongoDB、CouchDB屬于這種類型。它們屬于NoSQL數(shù)據(jù)庫,但與key-value存儲相異。

不定義表結(jié)構

面向文檔的數(shù)據(jù)庫具有以下特征:即使不定義表結(jié)構,也可以像定義了表結(jié)構一樣使用。關系型數(shù)據(jù)庫在變更表結(jié)構時比較費事,而且為了保持一致性還需修改程序。然而NoSQL數(shù)據(jù)庫則可省去這些麻煩(通常程序都是正確的),確實是方便快捷。

可以使用復雜的查詢條件

跟key-value存儲不同的是,面向文檔的數(shù)據(jù)庫可以通過復雜的查詢條件來獲取數(shù)據(jù)。雖然不具備事務處理和JOIN這些關系型數(shù)據(jù)庫所具有的處理能力,但除此以外的其他處理基本上都能實現(xiàn)。這是非常容易使用的NoSQL數(shù)據(jù)庫。

不需要定義表結(jié)構

可以利用復雜的查詢條件

面向列的數(shù)據(jù)庫

Cassandra、Hbase、HyperTable屬于這種類型。由于近年來數(shù)據(jù)量出現(xiàn)爆發(fā)性增長,這種類型的NoSQL數(shù)據(jù)庫尤其引人注目。

面向行的數(shù)據(jù)庫和面向列的數(shù)據(jù)庫

普通的關系型數(shù)據(jù)庫都是以行為單位來存儲數(shù)據(jù)的,擅長進行以行為單位的讀入處理,比如特定條件數(shù)據(jù)的獲取。因此,關系型數(shù)據(jù)庫也被稱為面向行的數(shù)據(jù)庫。相反,面向列的數(shù)據(jù)庫是以列為單位來存儲數(shù)據(jù)的,擅長以列為單位讀入數(shù)據(jù)。

高擴展性

面向列的數(shù)據(jù)庫具有高擴展性,即使數(shù)據(jù)增加也不會降低相應的處理速度(特別是寫入速度),所以它主要應用于需要處理大量數(shù)據(jù)的情況。另外,利用面向列的數(shù)據(jù)庫的優(yōu)勢,把它作為批處理程序的存儲器來對大量數(shù)據(jù)進行更新也是非常有用的。但由于面向列的數(shù)據(jù)庫跟現(xiàn)行數(shù)據(jù)庫存儲的思維方式有很大不同,應用起來十分困難。

高擴展性(特別是寫入處理)

應用十分困難

最近,像Twitter和Facebook這樣需要對大量數(shù)據(jù)進行更新和查詢的網(wǎng)絡服務不斷增加,面向列的數(shù)據(jù)庫的優(yōu)勢對其中一些服務是非常有用的,但是由于這與本書所要介紹的內(nèi)容關系不大,就不進行詳細介紹了。

總結(jié):

NoSQL并不是No-SQL,而是指Not Only SQL。

NoSQL的出現(xiàn)是為了彌補SQL數(shù)據(jù)庫因為事務等機制帶來的對海量數(shù)據(jù)、高并發(fā)請求的處理的性能上的欠缺。

NoSQL不是為了替代SQL而出現(xiàn)的,它是一種替補方案,而不是解決方案的首選。

絕大多數(shù)的NoSQL產(chǎn)品都是基于大內(nèi)存和高性能隨機讀寫的(比如具有更高性能的固態(tài)硬盤陣列),一般的小型企業(yè)在選擇NoSQL時一定要慎重!不要為了NoSQL而NoSQL,可能會導致花了冤枉錢又耽擱了項目進程。

NoSQL不是萬能的,但在大型項目中,你往往需要它!

簡述什么是nosql數(shù)據(jù)庫,并列舉兩種常見的nosql數(shù)據(jù)庫名稱及其特點

NoSQL太火,冒出太多產(chǎn)品了,保守估計也成百上千了。

互聯(lián)網(wǎng)公司常用的基本集中在以下幾種,每種只舉一個比較常見或者應用比較成功的例子吧。

1. In-Memory KV Store : Redis

in memory key-value store,同時提供了更加豐富的數(shù)據(jù)結(jié)構和運算的能力,成功用法是替代memcached,通過checkpoint和commit log提供了快速的宕機恢復,同時支持replication提供讀可擴展和高可用。

2. Disk-Based KV Store: Leveldb

真正基于磁盤的key-value storage, 模型單一簡單,數(shù)據(jù)量不受限于內(nèi)存大小,數(shù)據(jù)落盤高可靠,Google的幾位大神出品的精品,LSM模型天然寫優(yōu)化,順序?qū)懕P的方式對于新硬件ssd再適合不過了,不足是僅提供了一個庫,需要自己封裝server端。

3. Document Store: Mongodb

分布式nosql,具備了區(qū)別mysql的最大亮點:可擴展性。mongodb 最新引人的莫過于提供了sql接口,是目前nosql里最像mysql的,只是沒有ACID的特性,發(fā)展很快,支持了索引等特性,上手容易,對于數(shù)據(jù)量遠超內(nèi)存限制的場景來說,還需要慎重。

4. Column Table Store: HBase

這個富二代似乎不用贅述了,最大的優(yōu)勢是開源,對于普通的scan和基于行的get等基本查詢,性能完全不是問題,只是只提供裸的api,易用性上是短板,可擴展性方面是最強的,其次坐上了Hadoop的快車,社區(qū)發(fā)展很快,各種基于其上的開源產(chǎn)品不少,來解決諸如join、聚集運算等復雜查詢。

大數(shù)據(jù)從技術層面分為那幾層,每一層有什么功能?

大數(shù)據(jù)技術層面主要分為這幾層

 1. 預測分析技術

這也是大數(shù)據(jù)的主要功能之一。預測分析允許公司通過分析大數(shù)據(jù)源來發(fā)現(xiàn)、評估、優(yōu)化和部署預測模型,從而提高業(yè)務性能或降低風險。同時,大數(shù)據(jù)的預測分析也與我們的生活息息相關。淘寶會預測你每次購物可能還想買什么,愛奇藝正在預測你可能想看什么,百合網(wǎng)和其他約會網(wǎng)站甚至試圖預測你會愛上誰……

2. NoSQL數(shù)據(jù)庫

NoSQL,Not Only SQL,意思是“不僅僅是SQL”,泛指非關系型數(shù)據(jù)庫。NoSQL數(shù)據(jù)庫提供了比關系數(shù)據(jù)庫更靈活、可伸縮和更便宜的替代方案,打破了傳統(tǒng)數(shù)據(jù)庫市場一統(tǒng)江山的格局。并且,NoSQL數(shù)據(jù)庫能夠更好地處理大數(shù)據(jù)應用的需求。常見的NoSQL數(shù)據(jù)庫有HBase、Redis、MongoDB、Couchbase、LevelDB等。

3. 搜索和知識發(fā)現(xiàn)

支持來自于多種數(shù)據(jù)源(如文件系統(tǒng)、數(shù)據(jù)庫、流、api和其他平臺和應用程序)中的大型非結(jié)構化和結(jié)構化數(shù)據(jù)存儲庫中自助提取信息的工具和技術。如,數(shù)據(jù)挖掘技術和各種大數(shù)據(jù)平臺。

4. 大數(shù)據(jù)流計算引擎

能夠過濾、聚合、豐富和分析來自多個完全不同的活動數(shù)據(jù)源的數(shù)據(jù)的高吞吐量的框架,可以采用任何數(shù)據(jù)格式?,F(xiàn)今流行的流式計算引擎有Spark Streaming和Flink。

5. 內(nèi)存數(shù)據(jù)結(jié)構

通過在分布式計算機系統(tǒng)中動態(tài)隨機訪問內(nèi)存(DRAM)、閃存或SSD上分布數(shù)據(jù),提供低延遲的訪問和處理大量數(shù)據(jù)。

6. 分布式文件存儲

為了保證文件的可靠性和存取性能,數(shù)據(jù)通常以副本的方式存儲在多個節(jié)點上的計算機網(wǎng)絡。常見的分布式文件系統(tǒng)有GFS、HDFS、Lustre 、Ceph等。

7. 數(shù)據(jù)虛擬化

數(shù)據(jù)虛擬化是一種數(shù)據(jù)管理方法,它允許應用程序檢索和操作數(shù)據(jù),而不需要關心有關數(shù)據(jù)的技術細節(jié),比如數(shù)據(jù)在源文件中是何種格式,或者數(shù)據(jù)存儲的物理位置,并且可以提供單個客戶用戶視圖。

8. 數(shù)據(jù)集成

用于跨解決方案進行數(shù)據(jù)編排的工具,如Amazon Elastic MapReduce (EMR)、Apache Hive、Apache Pig、Apache Spark、MapReduce、Couchbase、Hadoop和MongoDB等。

9. 數(shù)據(jù)準備

減輕采購、成形、清理和共享各種雜亂數(shù)據(jù)集的負擔的軟件,以加速數(shù)據(jù)對分析的有用性。

10. 數(shù)據(jù)質(zhì)量

使用分布式數(shù)據(jù)存儲和數(shù)據(jù)庫上的并行操作,對大型高速數(shù)據(jù)集進行數(shù)據(jù)清理和充實的產(chǎn)品。

大數(shù)據(jù)技術有哪些

隨著大數(shù)據(jù)分析市場迅速擴展,哪些技術是最有需求和最有增長潛力的呢?在Forrester Research的一份最新研究報告中,評估了22種技術在整個數(shù)據(jù)生命周期中的成熟度和軌跡。這些技術都對大數(shù)據(jù)的實時、預測和綜合洞察有著巨大的貢獻。

1. 預測分析技術

這也是大數(shù)據(jù)的主要功能之一。預測分析允許公司通過分析大數(shù)據(jù)源來發(fā)現(xiàn)、評估、優(yōu)化和部署預測模型,從而提高業(yè)務性能或降低風險。同時,大數(shù)據(jù)的預測分析也與我們的生活息息相關。淘寶會預測你每次購物可能還想買什么,愛奇藝正在預測你可能想看什么,百合網(wǎng)和其他約會網(wǎng)站甚至試圖預測你會愛上誰……

2. NoSQL數(shù)據(jù)庫

NoSQL,Not Only SQL,意思是“不僅僅是SQL”,泛指非關系型數(shù)據(jù)庫。NoSQL數(shù)據(jù)庫提供了比關系數(shù)據(jù)庫更靈活、可伸縮和更便宜的替代方案,打破了傳統(tǒng)數(shù)據(jù)庫市場一統(tǒng)江山的格局。并且,NoSQL數(shù)據(jù)庫能夠更好地處理大數(shù)據(jù)應用的需求。常見的NoSQL數(shù)據(jù)庫有HBase、Redis、MongoDB、Couchbase、LevelDB等。

3. 搜索和知識發(fā)現(xiàn)

支持來自于多種數(shù)據(jù)源(如文件系統(tǒng)、數(shù)據(jù)庫、流、api和其他平臺和應用程序)中的大型非結(jié)構化和結(jié)構化數(shù)據(jù)存儲庫中自助提取信息的工具和技術。如,數(shù)據(jù)挖掘技術和各種大數(shù)據(jù)平臺。

4. 大數(shù)據(jù)流計算引擎

能夠過濾、聚合、豐富和分析來自多個完全不同的活動數(shù)據(jù)源的數(shù)據(jù)的高吞吐量的框架,可以采用任何數(shù)據(jù)格式?,F(xiàn)今流行的流式計算引擎有Spark Streaming和Flink。

5. 內(nèi)存數(shù)據(jù)結(jié)構

通過在分布式計算機系統(tǒng)中動態(tài)隨機訪問內(nèi)存(DRAM)、閃存或SSD上分布數(shù)據(jù),提供低延遲的訪問和處理大量數(shù)據(jù)。

6. 分布式文件存儲

為了保證文件的可靠性和存取性能,數(shù)據(jù)通常以副本的方式存儲在多個節(jié)點上的計算機網(wǎng)絡。常見的分布式文件系統(tǒng)有GFS、HDFS、Lustre 、Ceph等。

7. 數(shù)據(jù)虛擬化

數(shù)據(jù)虛擬化是一種數(shù)據(jù)管理方法,它允許應用程序檢索和操作數(shù)據(jù),而不需要關心有關數(shù)據(jù)的技術細節(jié),比如數(shù)據(jù)在源文件中是何種格式,或者數(shù)據(jù)存儲的物理位置,并且可以提供單個客戶用戶視圖。

8. 數(shù)據(jù)集成

用于跨解決方案進行數(shù)據(jù)編排的工具,如Amazon Elastic MapReduce (EMR)、Apache Hive、Apache Pig、Apache Spark、MapReduce、Couchbase、Hadoop和MongoDB等。

9. 數(shù)據(jù)準備

減輕采購、成形、清理和共享各種雜亂數(shù)據(jù)集的負擔的軟件,以加速數(shù)據(jù)對分析的有用性。

10. 數(shù)據(jù)質(zhì)量

使用分布式數(shù)據(jù)存儲和數(shù)據(jù)庫上的并行操作,對大型高速數(shù)據(jù)集進行數(shù)據(jù)清理和充實的產(chǎn)品。

對于大數(shù)據(jù)中的NoSQL,以下不屬于NoSQL的數(shù)據(jù)庫是哪個

答案:A

1.文檔型數(shù)據(jù)庫

作為最受歡迎的NoSQL產(chǎn)品,文檔型數(shù)據(jù)庫MongoDB當仁不讓地占據(jù)了第一的位置,同時它也是所有NoSQL數(shù)據(jù)庫中排名最靠前的產(chǎn)品(總排行榜第七名)。Apache基金會的CouchDB排在第二,基于.Net的數(shù)據(jù)庫RavenDB排在第三,Couchbase排在第四。

2.鍵值(Key-value)數(shù)據(jù)庫

鍵值(Key-value)數(shù)據(jù)庫是NoSQL領域中應用范圍最廣的,也是涉及產(chǎn)品最多的一種模型。從最簡單的BerkeleyDB到功能豐富的分布式數(shù)據(jù)庫Riak再到Amazon托管的DynamoDB不一而足。

在鍵值數(shù)據(jù)庫流行度排行中,Redis不出意外地排名第一,它是一款由Vmware支持的內(nèi)存數(shù)據(jù)庫,總體排名第十一。排在第二位的是Memcached,它在緩存系統(tǒng)中應用十分廣泛。排在之后的是Riak、BerkeleyDB、SimpleDB、DynamoDB以及甲骨文的Oracle NoSQL數(shù)據(jù)庫。值得注意的是,Oracle NoSQL數(shù)據(jù)庫上榜不久,得分已經(jīng)翻番,上升勢頭非常迅猛。

3. 列式存儲

列式存儲被視為NoSQL數(shù)據(jù)庫中非常重要的一種模式,其中Cassandra流行度最高,它已經(jīng)由Facebook轉(zhuǎn)交給到Apache進行管理,同時Cassandra在全體數(shù)據(jù)庫排名中排在第十位,緊隨MongoDB成為第二受歡迎的NoSQL數(shù)據(jù)庫?;贖adoop的Hbase排在第二位,Hypertable排在第三。而Google的BigTable并未列入排名,原因是它并未正式公開。


分享標題:不常見的nosql,不常見的蔬菜
網(wǎng)頁地址:http://weahome.cn/article/phspdh.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部