真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

在Java項目中實現(xiàn)多線程并發(fā)編程的方法

在Java項目中實現(xiàn)多線程并發(fā)編程的方法?很多新手對此不是很清楚,為了幫助大家解決這個難題,下面小編將為大家詳細講解,有這方面需求的人可以來學(xué)習(xí)下,希望你能有所收獲。

成都創(chuàng)新互聯(lián)公司始終堅持【策劃先行,效果至上】的經(jīng)營理念,通過多達10余年累計超上千家客戶的網(wǎng)站建設(shè)總結(jié)了一套系統(tǒng)有效的全網(wǎng)營銷推廣解決方案,現(xiàn)已廣泛運用于各行各業(yè)的客戶,其中包括:成都iso認證等企業(yè),備受客戶表揚。

Java 中的鎖通常分為兩種:

通過關(guān)鍵字 synchronized 獲取的鎖,我們稱為同步鎖,上一篇有介紹到:Java 多線程并發(fā)編程 Synchronized 關(guān)鍵字。
java.util.concurrent(JUC)包里的鎖,如通過繼承接口 Lock 而實現(xiàn)的 ReentrantLock(互斥鎖),繼承 ReadWriteLock 實現(xiàn)的 ReentrantReadWriteLock(讀寫鎖)。
本篇主要介紹 ReentrantLock(互斥鎖)。

ReentrantLock(互斥鎖)

ReentrantLock 互斥鎖,在同一時間只能被一個線程所占有,在被持有后并未釋放之前,其他線程若想獲得該鎖只能等待或放棄。

ReentrantLock 互斥鎖是可重入鎖,即某一線程可多次獲得該鎖。

公平鎖 and 非公平鎖

public ReentrantLock() {
    sync = new NonfairSync();
  }

  public ReentrantLock(boolean fair) {
    sync = fair ? new FairSync() : new NonfairSync();
  }

由 ReentrantLock 的構(gòu)造函數(shù)可見,在實例化 ReentrantLock 的時候我們可以選擇實例化一個公平鎖或非公平鎖,而默認會構(gòu)造一個非公平鎖。

公平鎖與非公平鎖區(qū)別在于競爭鎖時的有序與否。公平鎖可確保有序性(FIFO 隊列),非公平鎖不能確保有序性(即使也有 FIFO 隊列)。

然而,公平是要付出代價的,公平鎖比非公平鎖要耗性能,所以在非必須確保公平的條件下,一般使用非公平鎖可提高吞吐率。所以 ReentrantLock 默認的構(gòu)造函數(shù)也是“不公平”的。

一般使用

DEMO1:

public class Test {

  private static class Counter {

    private ReentrantLock mReentrantLock = new ReentrantLock();

    public void count() {
      mReentrantLock.lock();
      try {
        for (int i = 0; i < 6; i++) {
          System.out.println(Thread.currentThread().getName() + ", i = " + i);
        }
      } finally {
	      // 必須在 finally 釋放鎖
        mReentrantLock.unlock();
      }
    }
  }

  private static class MyThread extends Thread {

    private Counter mCounter;

    public MyThread(Counter counter) {
      mCounter = counter;
    }

    @Override
    public void run() {
      super.run();
      mCounter.count();
    }
  }

  public static void main(String[] var0) {
    Counter counter = new Counter();
    // 注:myThread1 和 myThread2 是調(diào)用同一個對象 counter
    MyThread myThread1 = new MyThread(counter);
    MyThread myThread2 = new MyThread(counter);
    myThread1.start();
    myThread2.start();
  }
}

DEMO1 輸出:

Thread-0, i = 0
Thread-0, i = 1
Thread-0, i = 2
Thread-0, i = 3
Thread-0, i = 4
Thread-0, i = 5
Thread-1, i = 0
Thread-1, i = 1
Thread-1, i = 2
Thread-1, i = 3
Thread-1, i = 4
Thread-1, i = 5

DEMO1 僅使用了 ReentrantLock 的 lock 和 unlock 來提現(xiàn)一般鎖的特性,確保線程的有序執(zhí)行。此種場景 synchronized 也適用。

鎖的作用域

DEMO2:

public class Test {

  private static class Counter {

    private ReentrantLock mReentrantLock = new ReentrantLock();

    public void count() {
      for (int i = 0; i < 6; i++) {
        mReentrantLock.lock();
        // 模擬耗時,突出線程是否阻塞
        try{
          Thread.sleep(100);
          System.out.println(Thread.currentThread().getName() + ", i = " + i);
        } catch (InterruptedException e) {
          e.printStackTrace();
        } finally {
	        // 必須在 finally 釋放鎖
          mReentrantLock.unlock();
        }
      }
    }

    public void doOtherThing(){
      for (int i = 0; i < 6; i++) {
        // 模擬耗時,突出線程是否阻塞
        try {
          Thread.sleep(100);
        } catch (InterruptedException e) {
          e.printStackTrace();
        }
        System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
      }
    }
  }
  
  public static void main(String[] var0) {
    final Counter counter = new Counter();
    new Thread(new Runnable() {
      @Override
      public void run() {
        counter.count();
      }
    }).start();
    new Thread(new Runnable() {
      @Override
      public void run() {
        counter.doOtherThing();
      }
    }).start();
  }
}

DEMO2 輸出:

Thread-0, i = 0
Thread-1 doOtherThing, i = 0
Thread-0, i = 1
Thread-1 doOtherThing, i = 1
Thread-0, i = 2
Thread-1 doOtherThing, i = 2
Thread-0, i = 3
Thread-1 doOtherThing, i = 3
Thread-0, i = 4
Thread-1 doOtherThing, i = 4
Thread-0, i = 5
Thread-1 doOtherThing, i = 5

DEMO3:

public class Test {

  private static class Counter {

    private ReentrantLock mReentrantLock = new ReentrantLock();

    public void count() {
      for (int i = 0; i < 6; i++) {
        mReentrantLock.lock();
        // 模擬耗時,突出線程是否阻塞
        try{
          Thread.sleep(100);
          System.out.println(Thread.currentThread().getName() + ", i = " + i);
        } catch (InterruptedException e) {
          e.printStackTrace();
        } finally {
          // 必須在 finally 釋放鎖
          mReentrantLock.unlock();
        }
      }
    }

    public void doOtherThing(){
      mReentrantLock.lock();
      try{
        for (int i = 0; i < 6; i++) {
          // 模擬耗時,突出線程是否阻塞
          try {
            Thread.sleep(100);
          } catch (InterruptedException e) {
            e.printStackTrace();
          }
          System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
        }
      }finally {
        mReentrantLock.unlock();
      }

    }
  }

  public static void main(String[] var0) {
    final Counter counter = new Counter();
    new Thread(new Runnable() {
      @Override
      public void run() {
        counter.count();
      }
    }).start();
    new Thread(new Runnable() {
      @Override
      public void run() {
        counter.doOtherThing();
      }
    }).start();
  }
}

DEMO3 輸出:

Thread-0, i = 0
Thread-0, i = 1
Thread-0, i = 2
Thread-0, i = 3
Thread-0, i = 4
Thread-0, i = 5
Thread-1 doOtherThing, i = 0
Thread-1 doOtherThing, i = 1
Thread-1 doOtherThing, i = 2
Thread-1 doOtherThing, i = 3
Thread-1 doOtherThing, i = 4
Thread-1 doOtherThing, i = 5

結(jié)合 DEMO2 和 DEMO3 輸出可見,鎖的作用域在于 mReentrantLock,因為所來自于 mReentrantLock。

可終止等待

DEMO4:

public class Test {

  static final int TIMEOUT = 300;

  private static class Counter {

    private ReentrantLock mReentrantLock = new ReentrantLock();

    public void count() {
      try{
        //lock() 不可中斷
        mReentrantLock.lock();
        // 模擬耗時,突出線程是否阻塞
        for (int i = 0; i < 6; i++) {
          long startTime = System.currentTimeMillis();
          while (true) {
            if (System.currentTimeMillis() - startTime > 100)
              break;
          }
          System.out.println(Thread.currentThread().getName() + ", i = " + i);
        }
      } finally {
        // 必須在 finally 釋放鎖
        mReentrantLock.unlock();
      }
    }

    public void doOtherThing(){
      try{
        //lockInterruptibly() 可中斷,若線程沒有中斷,則獲取鎖
        mReentrantLock.lockInterruptibly();
        for (int i = 0; i < 6; i++) {
          // 模擬耗時,突出線程是否阻塞
          long startTime = System.currentTimeMillis();
          while (true) {
            if (System.currentTimeMillis() - startTime > 100)
              break;
          }
          System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
        }
      } catch (InterruptedException e) {
        System.out.println(Thread.currentThread().getName() + " 中斷 ");
      }finally {
        // 若當前線程持有鎖,則釋放
        if(mReentrantLock.isHeldByCurrentThread()){
          mReentrantLock.unlock();
        }
      }
    }
  }

  public static void main(String[] var0) {
    final Counter counter = new Counter();
    new Thread(new Runnable() {
      @Override
      public void run() {
        counter.count();
      }
    }).start();
    Thread thread2 = new Thread(new Runnable() {
      @Override
      public void run() {
        counter.doOtherThing();
      }
    });
    thread2.start();
    long start = System.currentTimeMillis();
    while (true){
      if (System.currentTimeMillis() - start > TIMEOUT) {
        // 若線程還在運行,嘗試中斷
        if(thread2.isAlive()){
          System.out.println(" 不等了,嘗試中斷 ");
          thread2.interrupt();
        }
        break;
      }
    }
  }
}

DEMO4 輸出:

Thread-0, i = 0
Thread-0, i = 1
Thread-0, i = 2
不等了,嘗試中斷
Thread-1 中斷
Thread-0, i = 3
Thread-0, i = 4
Thread-0, i = 5

線程 thread2 等待 300ms 后 timeout,中斷等待成功。

若把 TIMEOUT 改成 3000ms,輸出結(jié)果:(正常運行)

Thread-0, i = 0
Thread-0, i = 1
Thread-0, i = 2
Thread-0, i = 3
Thread-0, i = 4
Thread-0, i = 5
Thread-1 doOtherThing, i = 0
Thread-1 doOtherThing, i = 1
Thread-1 doOtherThing, i = 2
Thread-1 doOtherThing, i = 3
Thread-1 doOtherThing, i = 4
Thread-1 doOtherThing, i = 5

定時鎖

DEMO5:

public class Test {

  static final int TIMEOUT = 3000;

  private static class Counter {

    private ReentrantLock mReentrantLock = new ReentrantLock();

    public void count() {
      try{
        //lock() 不可中斷
        mReentrantLock.lock();
        // 模擬耗時,突出線程是否阻塞
        for (int i = 0; i < 6; i++) {
          long startTime = System.currentTimeMillis();
          while (true) {
            if (System.currentTimeMillis() - startTime > 100)
              break;
          }
          System.out.println(Thread.currentThread().getName() + ", i = " + i);
        }
      } finally {
        // 必須在 finally 釋放鎖
        mReentrantLock.unlock();
      }
    }

    public void doOtherThing(){
      try{
        //tryLock(long timeout, TimeUnit unit) 嘗試獲得鎖
        boolean isLock = mReentrantLock.tryLock(300, TimeUnit.MILLISECONDS);
        System.out.println(Thread.currentThread().getName() + " isLock:" + isLock);
        if(isLock){
          for (int i = 0; i < 6; i++) {
            // 模擬耗時,突出線程是否阻塞
            long startTime = System.currentTimeMillis();
            while (true) {
              if (System.currentTimeMillis() - startTime > 100)
                break;
            }
            System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
          }
        }else{
          System.out.println(Thread.currentThread().getName() + " timeout");
        }
      } catch (InterruptedException e) {
        System.out.println(Thread.currentThread().getName() + " 中斷 ");
      }finally {
        // 若當前線程持有鎖,則釋放
        if(mReentrantLock.isHeldByCurrentThread()){
          mReentrantLock.unlock();
        }
      }
    }
  }

  public static void main(String[] var0) {
    final Counter counter = new Counter();
    new Thread(new Runnable() {
      @Override
      public void run() {
        counter.count();
      }
    }).start();
    Thread thread2 = new Thread(new Runnable() {
      @Override
      public void run() {
        counter.doOtherThing();
      }
    });
    thread2.start();
  }
}

DEMO5 輸出:

Thread-0, i = 0
Thread-0, i = 1
Thread-0, i = 2
Thread-1 isLock:false
Thread-1 timeout
Thread-0, i = 3
Thread-0, i = 4
Thread-0, i = 5

tryLock() 嘗試獲得鎖,tryLock(long timeout, TimeUnit unit) 在給定的 timeout 時間內(nèi)嘗試獲得鎖,若超時,則不帶鎖往下走,所以必須加以判斷。

ReentrantLock or synchronized

ReentrantLock 、synchronized 之間如何選擇?

ReentrantLock 在性能上 比 synchronized 更勝一籌。

ReentrantLock 需格外小心,因為需要顯式釋放鎖,lock() 后記得 unlock(),而且必須在 finally 里面,否則容易造成死鎖。
synchronized 隱式自動釋放鎖,使用方便。

ReentrantLock 擴展性好,可中斷鎖,定時鎖,自由控制。
synchronized 一但進入阻塞等待,則無法中斷等待。

看完上述內(nèi)容是否對您有幫助呢?如果還想對相關(guān)知識有進一步的了解或閱讀更多相關(guān)文章,請關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,感謝您對創(chuàng)新互聯(lián)的支持。


網(wǎng)站名稱:在Java項目中實現(xiàn)多線程并發(fā)編程的方法
路徑分享:http://weahome.cn/article/pieoog.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部